int8/uint8 support (#837)

* feat: int8 support

* feat: uint8 support

* feat: int8 tests

* fix: fix uint8 on clang

* feat: test casting between int8/uint8/float16/float32

* clean: way cleaner dtype tests

* feat: preprocess_imagenet using the correct dtype

* feat: add test for overflow between uint8 and int8
This commit is contained in:
wozeparrot
2023-05-29 02:15:06 -04:00
committed by GitHub
parent 2939e40b98
commit 2fd2fb6380
9 changed files with 94 additions and 65 deletions

View File

@@ -8,83 +8,110 @@ from tinygrad.tensor import Tensor, dtypes
# for LLVM, it segfaults because it can't link to the casting function
@unittest.skipIf(getenv("CI", "") != "" and Device.DEFAULT in ["LLVM"], "float16 broken in some CI backends")
class TestDtype(unittest.TestCase):
def test_half_to_np(self):
a = Tensor([1,2,3,4], dtype=dtypes.float16)
def _test_to_np(self, a, np_dtype, target):
print(a)
na = a.numpy()
print(na, na.dtype, a.lazydata.realized)
assert na.dtype == np.float16
np.testing.assert_allclose(na, [1,2,3,4])
assert na.dtype == np_dtype
np.testing.assert_allclose(na, target)
def test_half_add(self):
a = Tensor([1,2,3,4], dtype=dtypes.float16)
b = Tensor([1,2,3,4], dtype=dtypes.float16)
def test_half_to_np(self): self._test_to_np(Tensor([1,2,3,4], dtype=dtypes.float16), np.float16, [1,2,3,4])
def test_int8_to_np(self): self._test_to_np(Tensor([1,2,3,4], dtype=dtypes.int8), np.int8, [1,2,3,4])
def test_uint8_to_np(self): self._test_to_np(Tensor([1,2,3,4], dtype=dtypes.uint8), np.uint8, [1,2,3,4])
def _test_cast(self, a, target_dtype, target):
print(a)
b = a.cast(target_dtype)
print(b.numpy())
assert b.dtype == target_dtype
np.testing.assert_allclose(b.numpy(), target)
def test_float_to_half(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float16, [1,2,3,4])
def test_float_to_int8(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.int8, [1,2,3,4])
def test_float_to_uint8(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.uint8, [1,2,3,4])
def test_half_to_float(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.float32, [1,2,3,4])
def test_half_to_int8(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.int8, [1,2,3,4])
def test_half_to_uint8(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.uint8, [1,2,3,4])
def test_int8_to_float(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.float32, [1,2,3,4])
def test_int8_to_half(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.float16, [1,2,3,4])
def test_int8_to_uint8(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.uint8, [1,2,3,4])
def test_uint8_to_float(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.uint8), dtypes.float32, [1,2,3,4])
def test_uint8_to_half(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.uint8), dtypes.float16, [1,2,3,4])
def test_uint8_to_int8(self): self._test_cast(Tensor([1,2,3,4], dtype=dtypes.uint8), dtypes.int8, [1,2,3,4])
def _test_add(self, a, b, target_dtype, target):
c = a+b
print(c.numpy())
assert c.dtype == dtypes.float16
np.testing.assert_allclose(c.numpy(), [2,4,6,8])
assert c.dtype == target_dtype
np.testing.assert_allclose(c.numpy(), target)
def test_half_mul(self):
a = Tensor([1,2,3,4], dtype=dtypes.float16)
b = Tensor([1,2,3,4], dtype=dtypes.float16)
def test_half_add(self): self._test_add(Tensor([1,2,3,4], dtype=dtypes.float16), Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.float16, [2,4,6,8])
def test_int8_add(self): self._test_add(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.int8, [2,4,6,8])
def _test_mul(self, a, b, target_dtype, target):
c = a*b
print(c.numpy())
assert c.dtype == dtypes.float16
np.testing.assert_allclose(c.numpy(), [1,4,9,16])
assert c.dtype == target_dtype
np.testing.assert_allclose(c.numpy(), target)
def test_half_matmul(self):
a = Tensor([[1,2],[3,4]], dtype=dtypes.float16)
b = Tensor.eye(2, dtype=dtypes.float16)
def test_half_mul(self): self._test_mul(Tensor([1,2,3,4], dtype=dtypes.float16), Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.float16, [1,4,9,16])
def test_int8_mul(self): self._test_mul(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.int8), dtypes.int8, [1,4,9,16])
def _test_matmul(self, a, b, target_dtype, target):
c = a@b
print(c.numpy())
assert c.dtype == dtypes.float16
np.testing.assert_allclose(c.numpy(), [[1,2],[3,4]])
assert c.dtype == target_dtype
np.testing.assert_allclose(c.numpy(), target)
def test_upcast_float(self):
a = Tensor([1,2,3,4], dtype=dtypes.float16)
print(a)
fa = a.float()
assert a.device == fa.device
assert a.requires_grad == fa.requires_grad
na = fa.numpy()
print(na, na.dtype)
assert na.dtype == np.float32
np.testing.assert_allclose(na, [1,2,3,4])
def test_half_matmul(self): self._test_matmul(Tensor([[1,2],[3,4]], dtype=dtypes.float16), Tensor.eye(2, dtype=dtypes.float16), dtypes.float16, [[1,2],[3,4]])
def test_int8_matmul(self): self._test_matmul(Tensor([[1,2],[3,4]], dtype=dtypes.int8), Tensor.eye(2, dtype=dtypes.int8), dtypes.int8, [[1,2],[3,4]])
def test_downcast_float(self):
a = Tensor([1,2,3,4], dtype=dtypes.float32, requires_grad=False).half()
print(a)
ha = a.half()
assert a.device == ha.device
assert a.requires_grad == ha.requires_grad
na = ha.numpy()
print(na, na.dtype)
assert na.dtype == np.float16
np.testing.assert_allclose(na, [1,2,3,4])
def test_half_add_upcast(self):
a = Tensor([1,2,3,4], dtype=dtypes.float16)
b = Tensor([1,2,3,4], dtype=dtypes.float32)
def _test_add_upcast(self, a, b, target_dtype, target):
c = a+b
print(c.numpy())
assert c.dtype == dtypes.float32
np.testing.assert_allclose(c.numpy(), [2,4,6,8])
assert c.dtype == target_dtype
np.testing.assert_allclose(c.numpy(), target)
def test_half_mul_upcast(self):
a = Tensor([1,2,3,4], dtype=dtypes.float16)
b = Tensor([1,2,3,4], dtype=dtypes.float32)
def test_half_add_upcast_float(self): self._test_add_upcast(Tensor([1,2,3,4], dtype=dtypes.float16), Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float32, [2,4,6,8])
def test_int8_add_upcast_float(self): self._test_add_upcast(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float32, [2,4,6,8])
def test_int8_add_upcast_half(self): self._test_add_upcast(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.float16, [2,4,6,8])
def _test_mul_upcast(self, a, b, target_dtype, target):
c = a*b
print(c.numpy())
assert c.dtype == dtypes.float32
np.testing.assert_allclose(c.numpy(), [1,4,9,16])
assert c.dtype == target_dtype
np.testing.assert_allclose(c.numpy(), target)
def test_half_matmul_upcast(self):
a = Tensor([[1,2],[3,4]], dtype=dtypes.float16)
b = Tensor.eye(2, dtype=dtypes.float32)
def test_half_mul_upcast_float(self): self._test_mul_upcast(Tensor([1,2,3,4], dtype=dtypes.float16), Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float32, [1,4,9,16])
def test_int8_mul_upcast_float(self): self._test_mul_upcast(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.float32), dtypes.float32, [1,4,9,16])
def test_int8_mul_upcast_half(self): self._test_mul_upcast(Tensor([1,2,3,4], dtype=dtypes.int8), Tensor([1,2,3,4], dtype=dtypes.float16), dtypes.float16, [1,4,9,16])
def _test_matmul_upcast(self, a, b, target_dtype, target):
c = a@b
print(c.numpy())
assert c.dtype == dtypes.float32
np.testing.assert_allclose(c.numpy(), [[1,2],[3,4]])
assert c.dtype == target_dtype
np.testing.assert_allclose(c.numpy(), target)
def test_half_matmul_upcast_float(self): self._test_matmul_upcast(Tensor([[1,2],[3,4]], dtype=dtypes.float16), Tensor.eye(2, dtype=dtypes.float32), dtypes.float32, [[1,2],[3,4]])
def test_int8_matmul_upcast_float(self): self._test_matmul_upcast(Tensor([[1,2],[3,4]], dtype=dtypes.int8), Tensor.eye(2, dtype=dtypes.float32), dtypes.float32, [[1,2],[3,4]])
def test_int8_matmul_upcast_half(self): self._test_matmul_upcast(Tensor([[1,2],[3,4]], dtype=dtypes.int8), Tensor.eye(2, dtype=dtypes.float16), dtypes.float16, [[1,2],[3,4]])
def test_int8_to_uint8_negative(self):
a = Tensor([-1, -2, -3, -4], dtype=dtypes.int8)
print(a)
b = a.cast(dtypes.uint8)
print(b.numpy())
np.testing.assert_allclose(b.numpy(), [255, 254, 253, 252])
def test_uint8_to_int8_overflow(self):
a = Tensor([255, 254, 253, 252], dtype=dtypes.uint8)
print(a)
b = a.cast(dtypes.int8)
print(b.numpy())
np.testing.assert_allclose(b.numpy(), [-1, -2, -3, -4])
if __name__ == '__main__':
unittest.main()