mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-02-19 02:44:40 -05:00
apply flake8 E203 rule (#684)
This commit is contained in:
@@ -59,8 +59,8 @@ class Linear:
|
||||
class GroupNorm:
|
||||
def __init__(self, num_groups:int, num_channels:int, eps:float=1e-5, affine:bool=True):
|
||||
self.num_groups, self.num_channels, self.eps = num_groups, num_channels, eps
|
||||
self.weight : Optional[Tensor] = Tensor.ones(num_channels) if affine else None
|
||||
self.bias : Optional[Tensor] = Tensor.zeros(num_channels) if affine else None
|
||||
self.weight: Optional[Tensor] = Tensor.ones(num_channels) if affine else None
|
||||
self.bias: Optional[Tensor] = Tensor.zeros(num_channels) if affine else None
|
||||
|
||||
def __call__(self, x:Tensor):
|
||||
# reshape for layernorm to work as group norm
|
||||
|
||||
@@ -3,13 +3,13 @@ from typing import List
|
||||
from tinygrad.tensor import Tensor
|
||||
|
||||
class Optimizer:
|
||||
def __init__(self, params : List[Tensor]):
|
||||
def __init__(self, params: List[Tensor]):
|
||||
# if it's None, but being put into an optimizer, set it to True
|
||||
for x in params:
|
||||
if x.requires_grad is None: x.requires_grad = True
|
||||
|
||||
self.params : List[Tensor] = [x for x in params if x.requires_grad]
|
||||
self.buffers : List[Tensor] = [x for x in params if not x.requires_grad] # buffers are still realized
|
||||
self.params: List[Tensor] = [x for x in params if x.requires_grad]
|
||||
self.buffers: List[Tensor] = [x for x in params if not x.requires_grad] # buffers are still realized
|
||||
|
||||
# TODO: this probably shouldn't change the gradients, just the ones used by the optimizer
|
||||
def clipnorm(self, amount=1):
|
||||
@@ -27,7 +27,7 @@ class Optimizer:
|
||||
p.realize()
|
||||
|
||||
class SGD(Optimizer):
|
||||
def __init__(self, params : List[Tensor], lr=0.001, momentum=0, nesterov=False):
|
||||
def __init__(self, params: List[Tensor], lr=0.001, momentum=0, nesterov=False):
|
||||
super().__init__(params)
|
||||
self.lr, self.momentum, self.nesterov = lr, momentum, nesterov
|
||||
self.b = [Tensor.zeros(*t.shape, device=params[0].device, requires_grad=False) for t in self.params] if self.momentum else []
|
||||
@@ -44,7 +44,7 @@ class SGD(Optimizer):
|
||||
self.realize(self.b)
|
||||
|
||||
class RMSprop(Optimizer):
|
||||
def __init__(self, params : List[Tensor], lr=0.001, decay=0.9, eps=1e-8):
|
||||
def __init__(self, params: List[Tensor], lr=0.001, decay=0.9, eps=1e-8):
|
||||
super().__init__(params)
|
||||
self.lr, self.decay, self.eps = lr, decay, eps
|
||||
|
||||
@@ -58,7 +58,7 @@ class RMSprop(Optimizer):
|
||||
self.realize(self.v)
|
||||
|
||||
class Adam(Optimizer):
|
||||
def __init__(self, params : List[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-8):
|
||||
def __init__(self, params: List[Tensor], lr=0.001, b1=0.9, b2=0.999, eps=1e-8):
|
||||
super().__init__(params)
|
||||
# NOTE: self.t is a tensor so Adam can be jitted
|
||||
self.lr, self.b1, self.b2, self.eps, self.t = lr, b1, b2, eps, Tensor([0], requires_grad=False).realize()
|
||||
@@ -77,7 +77,7 @@ class Adam(Optimizer):
|
||||
self.realize([self.t] + self.m + self.v)
|
||||
|
||||
def get_parameters(obj) -> List[Tensor]:
|
||||
parameters : List[Tensor] = []
|
||||
parameters: List[Tensor] = []
|
||||
if isinstance(obj, Tensor):
|
||||
parameters.append(obj)
|
||||
elif isinstance(obj, (list, tuple)):
|
||||
|
||||
Reference in New Issue
Block a user