mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-08 22:48:25 -05:00
fix test warnings (#13114)
* fix test warnings * precommit passes * ignore std_mean warning
This commit is contained in:
@@ -28,7 +28,7 @@ repos:
|
|||||||
pass_filenames: false
|
pass_filenames: false
|
||||||
- id: tests
|
- id: tests
|
||||||
name: subset of tests
|
name: subset of tests
|
||||||
entry: env OMP_NUM_THREADS=1 PYTHONPATH="." python3 -m pytest -n=8 test/test_ops.py test/test_dtype.py test/test_schedule.py test/test_assign.py
|
entry: env OMP_NUM_THREADS=1 PYTHONPATH="." python3 -m pytest -n=6 test/test_ops.py test/test_dtype.py test/test_schedule.py test/test_assign.py
|
||||||
language: system
|
language: system
|
||||||
always_run: true
|
always_run: true
|
||||||
pass_filenames: false
|
pass_filenames: false
|
||||||
|
|||||||
@@ -1,5 +1,8 @@
|
|||||||
[pytest]
|
[pytest]
|
||||||
norecursedirs = extra
|
norecursedirs =
|
||||||
|
extra
|
||||||
|
.hypothesis
|
||||||
|
.git
|
||||||
timeout = 300
|
timeout = 300
|
||||||
timeout_method = thread
|
timeout_method = thread
|
||||||
timeout_func_only = true
|
timeout_func_only = true
|
||||||
|
|||||||
@@ -1551,8 +1551,10 @@ class TestOps(unittest.TestCase):
|
|||||||
lambda x: Tensor.stack(*x.std_mean(axis=(1,2))))
|
lambda x: Tensor.stack(*x.std_mean(axis=(1,2))))
|
||||||
|
|
||||||
def test_std_mean_loaded_nan(self):
|
def test_std_mean_loaded_nan(self):
|
||||||
helper_test_op([(1,0,3,0,5)], lambda x: torch.stack(torch.std_mean(x, axis=(1,3))),
|
with warnings.catch_warnings():
|
||||||
lambda x: Tensor.stack(*x.std_mean(axis=(1,3))))
|
warnings.filterwarnings("ignore", message="std_mean\\(\\): degrees of freedom is <= 0")
|
||||||
|
helper_test_op([(1,0,3,0,5)], lambda x: torch.stack(torch.std_mean(x, axis=(1,3))),
|
||||||
|
lambda x: Tensor.stack(*x.std_mean(axis=(1,3))))
|
||||||
def test_softmax(self):
|
def test_softmax(self):
|
||||||
helper_test_op([(45,65)], torch.nn.Softmax(dim=1), Tensor.softmax, atol=1e-7, grad_atol=1e-7)
|
helper_test_op([(45,65)], torch.nn.Softmax(dim=1), Tensor.softmax, atol=1e-7, grad_atol=1e-7)
|
||||||
helper_test_op([(45)], torch.nn.Softmax(dim=0), Tensor.softmax, atol=1e-7, grad_atol=1e-7)
|
helper_test_op([(45)], torch.nn.Softmax(dim=0), Tensor.softmax, atol=1e-7, grad_atol=1e-7)
|
||||||
@@ -2820,13 +2822,13 @@ class TestOps(unittest.TestCase):
|
|||||||
@slow_test
|
@slow_test
|
||||||
def test_slice_fancy_indexing_list_indices(self):
|
def test_slice_fancy_indexing_list_indices(self):
|
||||||
a,b,c,d,e,i,j,k,o,p = self._get_index_randoms()
|
a,b,c,d,e,i,j,k,o,p = self._get_index_randoms()
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[[[0]]], lambda x: x[[[0]]])
|
helper_test_op([(2,5,6,5,3,4)], lambda x: x[((0,),)])
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[[0],b,c,d,:], lambda x: x[[0],j,k,o,:])
|
helper_test_op([(2,5,6,5,3,4)], lambda x: x[(0,),b,c,d,:], lambda x: x[(0,),j,k,o,:])
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[[[[0]]],b,c,d,[[1]]], lambda x: x[[[[0]]],j,k,o,[[1]]])
|
helper_test_op([(2,5,6,5,3,4)], lambda x: x[[[[0]]],b,c,d,[[1]]], lambda x: x[[[[0]]],j,k,o,[[1]]])
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[[1,0,-1],b,c,d,:], lambda x: x[[1,0,-1],j,k,o,:])
|
helper_test_op([(2,5,6,5,3,4)], lambda x: x[(1,0,-1),b,c,d,:], lambda x: x[(1,0,-1),j,k,o,:])
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,c,[1,2,3],...], lambda x: x[i,j,k,[1,2,3],...])
|
helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,c,(1,2,3),...], lambda x: x[i,j,k,(1,2,3),...])
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,c,[[1],[2],[3]],...], lambda x: x[i,j,k,[[1],[2],[3]],...])
|
helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,b,c,[[1],[2],[3]],...], lambda x: x[i,j,k,[[1],[2],[3]],...])
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,[2,1,0],c,[-2,1,0],e], lambda x: x[i,[2,1,0],k,[-2,1,0],p])
|
helper_test_op([(2,5,6,5,3,4)], lambda x: x[a,(2,1,0),c,(-2,1,0),e], lambda x: x[i,(2,1,0),k,(-2,1,0),p])
|
||||||
|
|
||||||
@slow_test
|
@slow_test
|
||||||
def test_slice_fancy_indexing_tuple_indices(self):
|
def test_slice_fancy_indexing_tuple_indices(self):
|
||||||
@@ -2841,11 +2843,10 @@ class TestOps(unittest.TestCase):
|
|||||||
@slow_test
|
@slow_test
|
||||||
def test_slice_fancy_indexing_list_with_tensors(self):
|
def test_slice_fancy_indexing_list_with_tensors(self):
|
||||||
a,b,c,d,e,i,j,k,o,p = self._get_index_randoms()
|
a,b,c,d,e,i,j,k,o,p = self._get_index_randoms()
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[[a]], lambda x: x[[i]])
|
helper_test_op([(2,5,6,5,3,4)], lambda x: x[(a,)], lambda x: x[(i,)])
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[[a,1]], lambda x: x[[i,1]])
|
helper_test_op([(2,5,6,5,3,4)], lambda x: x[(a,1)], lambda x: x[(i,1)])
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[[a,[1,1]]], lambda x: x[[i,[1,1]]])
|
helper_test_op([(2,5,6,5,3,4)], lambda x: x[(a,(1,1))], lambda x: x[(i,(1,1))])
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[[a,(1,1)]], lambda x: x[[i,(1,1)]])
|
helper_test_op([(2,5,6,5,3,4)], lambda x: x[(a,b,c,d,e)], lambda x: x[(i,j,k,o,p)])
|
||||||
helper_test_op([(2,5,6,5,3,4)], lambda x: x[[a,b,c,d,e]], lambda x: x[[i,j,k,o,p]])
|
|
||||||
|
|
||||||
def test_slice_fancy_indexing_errors(self):
|
def test_slice_fancy_indexing_errors(self):
|
||||||
a = Tensor.ones(10,11,12)
|
a = Tensor.ones(10,11,12)
|
||||||
|
|||||||
Reference in New Issue
Block a user