diff --git a/test/models/test_real_world.py b/test/models/test_real_world.py index 0d8389b76c..651f67f792 100644 --- a/test/models/test_real_world.py +++ b/test/models/test_real_world.py @@ -28,13 +28,16 @@ def helper_test(nm, gen, model, max_memory_allowed, max_kernels_allowed, all_jit model(*early_gen) Device[Device.DEFAULT].synchronize() tms.append(time.perf_counter_ns() - st) - mem_used = GlobalCounters.mem_used - global_mem_used + mem_used = (GlobalCounters.mem_used - global_mem_used) / 1e9 # TODO: jit should expose this correctly with graph kernels_used = len(model.jit_cache) if hasattr(model, "jit_cache") else None print(f"{nm}: used {mem_used/1e9:.2f} GB and {kernels_used} kernels in {min(tms)/1e6:.2f} ms") - assert mem_used/1e9 < max_memory_allowed, f"{nm} used more than {max_memory_allowed:.2f} GB - {mem_used/1e9:.2} GB used" - assert not kernels_used or kernels_used <= max_kernels_allowed, f"{nm} used more than {max_kernels_allowed} kernels, it used {kernels_used}" + assert mem_used < max_memory_allowed, f"{nm} used more than {max_memory_allowed:.3f} GB - {mem_used:.3} GB used" + assert (max_memory_allowed - mem_used) / max_memory_allowed < 0.2, f"{max_memory_allowed:.3f} GB is too far from {mem_used:.3} GB used" + if kernels_used: + assert kernels_used <= max_kernels_allowed, f"{nm} used more than {max_kernels_allowed} kernels, it used {kernels_used}" + assert (max_kernels_allowed - kernels_used) / max_kernels_allowed < 0.2, f"{max_kernels_allowed=} is too far from {kernels_used=} used" if all_jitted: assert kernels_used > 0 and kernels_used == GlobalCounters.kernel_count or (kernels_used <= GlobalCounters.kernel_count and getattr(Device[Device.DEFAULT], "graph", None)), f"only {kernels_used} out of {GlobalCounters.kernel_count} were jitted" # noqa: E501 @@ -61,7 +64,7 @@ class TestRealWorld(unittest.TestCase): derandomize_model(model) @TinyJit def test(t, t2): return model(t, Tensor([801]), t2).realize() - helper_test("test_sd", lambda: (Tensor.randn(1, 4, 32, 32),Tensor.randn(1, 77, params["ctx_dim"])), test, 18.0, 515) + helper_test("test_sd", lambda: (Tensor.randn(1, 4, 32, 32), Tensor.randn(1, 77, params["ctx_dim"])), test, 0.011, 515) def test_unet_resblock(self): model = [ResBlock(16, 24, 16) for _ in range(4)] @@ -70,7 +73,7 @@ class TestRealWorld(unittest.TestCase): def test(t, t2): for l in model: t = l(t, t2) return t.realize() - helper_test("test_unet_resblock", lambda: (Tensor.empty(4, 16, 8, 8), Tensor.empty(1, 24)), test, 0.01, 37) + helper_test("test_unet_resblock", lambda: (Tensor.empty(4, 16, 8, 8), Tensor.empty(1, 24)), test, 0.0002, 37) @unittest.skipUnless(is_dtype_supported(dtypes.float16), "need dtypes.float16") def test_llama(self): @@ -82,7 +85,7 @@ class TestRealWorld(unittest.TestCase): @TinyJit def test(t): return model(t, 0).realize() # TODO: test first token vs rest properly - helper_test("test_llama", lambda: (Tensor([[1,2,3,4]]),), test, 0.27, 168, all_jitted=True) + helper_test("test_llama", lambda: (Tensor([[1,2,3,4]]),), test, 0.23, 118, all_jitted=True) @unittest.skipUnless(is_dtype_supported(dtypes.float16), "need dtypes.float16") def test_gpt2(self): @@ -112,7 +115,7 @@ class TestRealWorld(unittest.TestCase): loss.backward() optimizer.step() - helper_test("train_mnist", lambda: (Tensor.randn(BS, 1, 28, 28),), train, 0.07, 103) + helper_test("train_mnist", lambda: (Tensor.randn(BS, 1, 28, 28),), train, 0.017, 103) @unittest.skipIf(CI and Device.DEFAULT in {"CPU", "CL"}, "slow") def test_forward_cifar(self): @@ -122,7 +125,7 @@ class TestRealWorld(unittest.TestCase): model = SpeedyResNet(Tensor.ones((12,3,2,2))) @TinyJit def run(X): return model(X) - helper_test("forward_cifar", lambda: (Tensor.randn(BS, 3, 32, 32),), run, (1.0/48)*BS, 126) + helper_test("forward_cifar", lambda: (Tensor.randn(BS, 3, 32, 32),), run, 0.033, 27) @unittest.skipIf(CI and Device.DEFAULT in {"CPU", "CL"}, "slow") def test_train_cifar(self): @@ -139,7 +142,7 @@ class TestRealWorld(unittest.TestCase): loss.backward() optimizer.step() - helper_test("train_cifar", lambda: (Tensor.randn(BS, 3, 32, 32),), train, (1.0/48)*BS, 126) + helper_test("train_cifar", lambda: (Tensor.randn(BS, 3, 32, 32),), train, 0.12, 126) @unittest.skipUnless(is_dtype_supported(dtypes.float16), "need dtypes.float16") def test_train_cifar_hyp(self): @@ -176,7 +179,7 @@ class TestRealWorld(unittest.TestCase): for v in data.values(): v.to_(Device.DEFAULT) helper_test("train_bert", lambda: (data["input_ids"], data["segment_ids"], data["input_mask"], data["masked_lm_positions"], \ - data["masked_lm_ids"], data["masked_lm_weights"], data["next_sentence_labels"]), train, 0.31, 427) + data["masked_lm_ids"], data["masked_lm_weights"], data["next_sentence_labels"]), train, 0.31, 400) if __name__ == '__main__': unittest.main()