remove more stale stuff (#13765)

* remove more stale stuff

* remove disassemblers/adreno

* stale
This commit is contained in:
George Hotz
2025-12-19 17:14:56 -04:00
committed by GitHub
parent 744af193f0
commit 45c459848d
19 changed files with 1 additions and 7965 deletions

View File

@@ -1,341 +0,0 @@
import argparse
import multiprocessing as mp
import os
import re
import sys
import time
from contextlib import contextmanager
from pathlib import Path
import numpy as np
import pyaudio
import yaml
from llama import LLaMa
from vits import MODELS as VITS_MODELS
from vits import Y_LENGTH_ESTIMATE_SCALARS, HParams, Synthesizer, TextMapper, get_hparams_from_file, load_model
from whisper import init_whisper, transcribe_waveform
from sentencepiece import SentencePieceProcessor
from tinygrad.helpers import Timing, fetch
from tinygrad import Tensor, dtypes
# Whisper constants
RATE = 16000
CHUNK = 1600
# LLaMa constants
IM_START = 32001
IM_END = 32002
# Functions for encoding prompts to chatml md
def encode_prompt(spp, k, v): return [IM_START]+spp.encode(f"{k}\n{v}")+[IM_END]+spp.encode("\n")
def start_prompt(spp, k): return [IM_START]+spp.encode(f"{k}\n")
def chunks(lst, n):
for i in range(0, len(lst), n): yield lst[i:i + n]
def create_fixed_tokenizer():
"""Function needed for extending tokenizer with additional chat tokens"""
import extra.junk.sentencepiece_model_pb2 as spb2
tokenizer_path = fetch("https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.4/resolve/main/tokenizer.model")
if SentencePieceProcessor(model_file=str(tokenizer_path)).vocab_size() != 32003:
print("creating fixed tokenizer")
mp = spb2.ModelProto()
mp.ParseFromString(tokenizer_path.read_bytes())
# https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.4/blob/main/added_tokens.json
mp.pieces.append(spb2.ModelProto.SentencePiece(piece="[PAD]", score=0))
mp.pieces.append(spb2.ModelProto.SentencePiece(piece="<|im_start|>", score=0))
mp.pieces.append(spb2.ModelProto.SentencePiece(piece="<|im_end|>", score=0))
tokenizer_path.write_bytes(mp.SerializeToString())
return tokenizer_path
def llama_prepare(llama: LLaMa, temperature: float, pre_prompt_path: Path) -> tuple[list[int], str, str, str]:
"""Prepares a llama model from a specified pre-prompt file"""
with open(str(pre_prompt_path)) as f:
config = yaml.safe_load(f.read())
toks = [llama.tokenizer.bos_id()] + encode_prompt(llama.tokenizer, "system", config["pre_prompt"].replace("\n", " "))
for i in config["examples"]:
toks += encode_prompt(llama.tokenizer, config["user_delim"], i["user_prompt"])
toks += encode_prompt(llama.tokenizer, config["resp_delim"], i["resp_prompt"])
llama.model(Tensor([toks]), 0, temperature).realize() # NOTE: outputs are not used
return toks, config["user_delim"], config["resp_delim"], len(toks), llama.tokenizer.decode(toks)
def llama_generate(
llama: LLaMa,
toks: list[int],
outputted: str,
prompt: str,
start_pos: int,
user_delim: str,
resp_delim: str,
temperature=0.7,
max_tokens=1000
):
"""Generates an output for the specified prompt"""
toks += encode_prompt(llama.tokenizer, user_delim, prompt)
toks += start_prompt(llama.tokenizer, resp_delim)
outputted = llama.tokenizer.decode(toks)
init_length = len(outputted)
for _ in range(max_tokens):
token = llama.model(Tensor([toks[start_pos:]]), start_pos, temperature).item()
start_pos = len(toks)
toks.append(token)
cur = llama.tokenizer.decode(toks)
# Print is just for debugging
sys.stdout.write(cur[len(outputted):])
sys.stdout.flush()
outputted = cur
if toks[-1] == IM_END: break
else:
toks.append(IM_END)
print() # because the output is flushed
return outputted, start_pos, outputted[init_length:].replace("<|im_end|>", "")
def tts(
text_to_synthesize: str,
synth: Synthesizer,
hps: HParams,
emotion_embedding: Path,
speaker_id: int,
model_to_use: str,
noise_scale: float,
noise_scale_w: float,
length_scale: float,
estimate_max_y_length: bool,
text_mapper: TextMapper,
model_has_multiple_speakers: bool,
pad_length=600,
vits_pad_length=1000
):
if model_to_use == "mmts-tts": text_to_synthesize = text_mapper.filter_oov(text_to_synthesize.lower())
# Convert the input text to a tensor.
stn_tst = text_mapper.get_text(text_to_synthesize, hps.data.add_blank, hps.data.text_cleaners)
init_shape = stn_tst.shape
assert init_shape[0] < pad_length, "text is too long"
x_tst, x_tst_lengths = stn_tst.pad(((0, pad_length - init_shape[0]),), value=1).unsqueeze(0), Tensor([init_shape[0]], dtype=dtypes.int64)
sid = Tensor([speaker_id], dtype=dtypes.int64) if model_has_multiple_speakers else None
# Perform inference.
audio_tensor = synth.infer(x_tst, x_tst_lengths, sid, noise_scale, length_scale, noise_scale_w, emotion_embedding=emotion_embedding,
max_y_length_estimate_scale=Y_LENGTH_ESTIMATE_SCALARS[model_to_use] if estimate_max_y_length else None, pad_length=vits_pad_length)[0, 0]
# Save the audio output.
audio_data = (np.clip(audio_tensor.numpy(), -1.0, 1.0) * 32767).astype(np.int16)
return audio_data
def init_vits(
model_to_use: str,
emotion_path: Path,
speaker_id: int,
seed: int,
):
model_config = VITS_MODELS[model_to_use]
# Load the hyperparameters from the config file.
hps = get_hparams_from_file(fetch(model_config[0]))
# If model has multiple speakers, validate speaker id and retrieve name if available.
model_has_multiple_speakers = hps.data.n_speakers > 0
if model_has_multiple_speakers:
if speaker_id >= hps.data.n_speakers: raise ValueError(f"Speaker ID {speaker_id} is invalid for this model.")
if hps.__contains__("speakers"): # maps speaker ids to names
speakers = hps.speakers
if isinstance(speakers, list): speakers = {speaker: i for i, speaker in enumerate(speakers)}
# Load emotions if any. TODO: find an english model with emotions, this is untested atm.
emotion_embedding = None
if emotion_path is not None:
if emotion_path.endswith(".npy"): emotion_embedding = Tensor(np.load(emotion_path), dtype=dtypes.int64).unsqueeze(0)
else: raise ValueError("Emotion path must be a .npy file.")
# Load symbols, instantiate TextMapper and clean the text.
if hps.__contains__("symbols"): symbols = hps.symbols
elif model_to_use == "mmts-tts": symbols = [x.replace("\n", "") for x in fetch("https://huggingface.co/facebook/mms-tts/raw/main/full_models/eng/vocab.txt").open(encoding="utf-8").readlines()]
else: symbols = ['_'] + list(';:,.!?¡¿—…"«»“” ') + list('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz') + list("ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'")
text_mapper = TextMapper(apply_cleaners=True, symbols=symbols)
# Load the model.
if seed is not None:
Tensor.manual_seed(seed)
np.random.seed(seed)
net_g = load_model(text_mapper.symbols, hps, model_config)
return net_g, emotion_embedding, text_mapper, hps, model_has_multiple_speakers
@contextmanager
def output_stream(num_channels: int, sample_rate: int):
try:
p = pyaudio.PyAudio()
stream = p.open(format=pyaudio.paInt16, channels=num_channels, rate=sample_rate, output=True)
yield stream
except KeyboardInterrupt: pass
finally:
stream.stop_stream()
stream.close()
p.terminate()
@contextmanager
def log_writer():
try:
logs = []
yield logs
finally:
sep = "="*os.get_terminal_size()[1]
print(f"{sep[:-1]}\nCHAT LOG")
print(*logs, sep="\n")
print(sep)
def listener(q: mp.Queue, event: mp.Event):
try:
p = pyaudio.PyAudio()
stream = p.open(format=pyaudio.paInt16, channels=1, rate=RATE, input=True, frames_per_buffer=CHUNK)
did_print = False
while True:
data = stream.read(CHUNK) # read data to avoid overflow
if event.is_set():
if not did_print:
print("listening")
did_print = True
q.put(((np.frombuffer(data, np.int16)/32768).astype(np.float32)*3))
else:
did_print = False
finally:
stream.stop_stream()
stream.close()
p.terminate()
def mp_output_stream(q: mp.Queue, counter: mp.Value, num_channels: int, sample_rate: int):
with output_stream(num_channels, sample_rate) as stream:
while True:
try:
stream.write(q.get())
counter.value += 1
except KeyboardInterrupt:
break
if __name__ == "__main__":
import nltk
nltk.download("punkt")
# Parse CLI arguments
parser = argparse.ArgumentParser("Have a tiny conversation with tinygrad")
# Whisper args
parser.add_argument("--whisper_model_name", type=str, default="tiny.en")
# LLAMA args
parser.add_argument("--llama_pre_prompt_path", type=Path, default=Path(__file__).parent / "conversation_data" / "pre_prompt_stacy.yaml", help="Path to yaml file which contains all pre-prompt data needed. ")
parser.add_argument("--llama_count", type=int, default=1000, help="Max number of tokens to generate")
parser.add_argument("--llama_temperature", type=float, default=0.7, help="Temperature in the softmax")
parser.add_argument("--llama_quantize", type=str, default=None, help="Quantize the weights to int8 or nf4 in memory")
parser.add_argument("--llama_model", type=Path, default=None, help="Folder with the original weights to load, or single .index.json, .safetensors or .bin file")
parser.add_argument("--llama_gen", type=str, default="tiny", required=False, help="Generation of the model to use")
parser.add_argument("--llama_size", type=str, default="1B-Chat", required=False, help="Size of model to use")
parser.add_argument("--llama_tokenizer", type=Path, default=None, required=False, help="Path to llama tokenizer.model")
# vits args
parser.add_argument("--vits_model_to_use", default="vctk", help="Specify the model to use. Default is 'vctk'.")
parser.add_argument("--vits_speaker_id", type=int, default=12, help="Specify the speaker ID. Default is 6.")
parser.add_argument("--vits_noise_scale", type=float, default=0.667, help="Specify the noise scale. Default is 0.667.")
parser.add_argument("--vits_noise_scale_w", type=float, default=0.8, help="Specify the noise scale w. Default is 0.8.")
parser.add_argument("--vits_length_scale", type=float, default=1, help="Specify the length scale. Default is 1.")
parser.add_argument("--vits_seed", type=int, default=None, help="Specify the seed (set to None if no seed). Default is 1337.")
parser.add_argument("--vits_num_channels", type=int, default=1, help="Specify the number of audio output channels. Default is 1.")
parser.add_argument("--vits_sample_width", type=int, default=2, help="Specify the number of bytes per sample, adjust if necessary. Default is 2.")
parser.add_argument("--vits_emotion_path", type=Path, default=None, help="Specify the path to emotion reference.")
parser.add_argument("--vits_estimate_max_y_length", type=str, default=False, help="If true, overestimate the output length and then trim it to the correct length, to prevent premature realization, much more performant for larger inputs, for smaller inputs not so much. Default is False.")
parser.add_argument("--vits_vocab_path", type=Path, default=None, help="Path to the TTS vocabulary.")
# conversation args
parser.add_argument("--max_sentence_length", type=int, default=20, help="Max words in one sentence to pass to vits")
args = parser.parse_args()
# Init models
model, enc = init_whisper(args.whisper_model_name)
synth, emotion_embedding, text_mapper, hps, model_has_multiple_speakers = init_vits(args.vits_model_to_use, args.vits_emotion_path, args.vits_speaker_id, args.vits_seed)
# Download tinyllama chat as a default model
if args.llama_model is None:
args.llama_model = fetch("https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.4/resolve/main/model.safetensors", "tinyllamachat.safetensors")
args.llama_gen = "tiny"
args.llama_size = "1B-Chat"
# Add 3 more tokens to the tokenizer
if args.llama_gen == "tiny" and args.llama_size.endswith("Chat"): args.llama_tokenizer = create_fixed_tokenizer()
tokenizer_path = args.llama_tokenizer or args.llama_model.parent / "tokenizer.model"
llama = LLaMa.build(args.llama_model, tokenizer_path, args.llama_gen, args.llama_size, args.llama_quantize)
toks, user_delim, resp_delim, start_pos, outputted = llama_prepare(llama, args.llama_temperature, args.llama_pre_prompt_path)
# Start child process for mic input
q = mp.Queue()
is_listening_event = mp.Event()
p = mp.Process(target=listener, args=(q, is_listening_event,))
p.daemon = True
p.start()
# Start child process for speaker output
out_q = mp.Queue()
out_counter = mp.Value("i", 0)
out_p = mp.Process(target=mp_output_stream, args=(out_q, out_counter, args.vits_num_channels, hps.data.sampling_rate,))
out_p.daemon = True
out_p.start()
# JIT tts
for i in ["Hello, I'm a chat bot", "I am capable of doing a lot of things"]:
tts(
i, synth, hps, emotion_embedding,
args.vits_speaker_id, args.vits_model_to_use, args.vits_noise_scale,
args.vits_noise_scale_w, args.vits_length_scale,
args.vits_estimate_max_y_length, text_mapper, model_has_multiple_speakers
)
# Start the pipeline
with log_writer() as log:
while True:
tokens = [enc._special_tokens["<|startoftranscript|>"], enc._special_tokens["<|notimestamps|>"]]
total = np.array([])
out_counter.value = 0
s = time.perf_counter()
is_listening_event.set()
prev_text = None
while True:
for _ in range(RATE // CHUNK): total = np.concatenate([total, q.get()])
txt = transcribe_waveform(model, enc, [total], truncate=True)
print(txt, end="\r")
if txt == "[BLANK_AUDIO]" or re.match(r"^\([\w+ ]+\)$", txt.strip()): continue
if prev_text is not None and prev_text == txt:
is_listening_event.clear()
break
prev_text = txt
print() # to avoid llama printing on the same line
log.append(f"{user_delim.capitalize()}: {txt}")
# Generate with llama
with Timing("llama generation: "):
outputted, start_pos, response = llama_generate(
llama, toks, outputted, txt, start_pos,
user_delim=user_delim, resp_delim=resp_delim, temperature=args.llama_temperature,
max_tokens=args.llama_count
)
log.append(f"{resp_delim.capitalize()}: {response}")
# Convert to voice
with Timing("tts: "):
sentences = nltk.sent_tokenize(response.replace('"', ""))
for i in sentences:
total = np.array([], dtype=np.int16)
for j in chunks(i.split(), args.max_sentence_length):
audio_data = tts(
" ".join(j), synth, hps, emotion_embedding,
args.vits_speaker_id, args.vits_model_to_use, args.vits_noise_scale,
args.vits_noise_scale_w, args.vits_length_scale,
args.vits_estimate_max_y_length, text_mapper, model_has_multiple_speakers
)
total = np.concatenate([total, audio_data])
out_q.put(total.tobytes())
while out_counter.value < len(sentences): continue
log.append(f"Total: {time.perf_counter() - s}")

View File

@@ -204,43 +204,6 @@ def eval_bert():
st = time.perf_counter()
def eval_mrcnn():
from tqdm import tqdm
from extra.models.mask_rcnn import MaskRCNN
from extra.models.resnet import ResNet
from extra.datasets.coco import BASEDIR, images, convert_prediction_to_coco_bbox, convert_prediction_to_coco_mask, accumulate_predictions_for_coco, evaluate_predictions_on_coco, iterate
from examples.mask_rcnn import compute_prediction_batched, Image
mdl = MaskRCNN(ResNet(50, num_classes=None, stride_in_1x1=True))
mdl.load_from_pretrained()
bbox_output = '/tmp/results_bbox.json'
mask_output = '/tmp/results_mask.json'
accumulate_predictions_for_coco([], bbox_output, rm=True)
accumulate_predictions_for_coco([], mask_output, rm=True)
#TODO: bs > 1 not as accurate
bs = 1
for batch in tqdm(iterate(images, bs=bs), total=len(images)//bs):
batch_imgs = []
for image_row in batch:
image_name = image_row['file_name']
img = Image.open(BASEDIR/f'val2017/{image_name}').convert("RGB")
batch_imgs.append(img)
batch_result = compute_prediction_batched(batch_imgs, mdl)
for image_row, result in zip(batch, batch_result):
image_name = image_row['file_name']
box_pred = convert_prediction_to_coco_bbox(image_name, result)
mask_pred = convert_prediction_to_coco_mask(image_name, result)
accumulate_predictions_for_coco(box_pred, bbox_output)
accumulate_predictions_for_coco(mask_pred, mask_output)
del batch_imgs
del batch_result
evaluate_predictions_on_coco(bbox_output, iou_type='bbox')
evaluate_predictions_on_coco(mask_output, iou_type='segm')
def eval_llama3():
from extra.models.llama import Transformer
from examples.llama3 import MODEL_PARAMS, load, convert_from_huggingface
@@ -541,7 +504,7 @@ if __name__ == "__main__":
# inference only
Tensor.training = False
models = getenv("MODEL", "resnet,retinanet,unet3d,rnnt,bert,mrcnn").split(",")
models = getenv("MODEL", "resnet,retinanet,unet3d,rnnt,bert").split(",")
for m in models:
nm = f"eval_{m}"
if nm in globals():

View File

@@ -1,740 +0,0 @@
import json, logging, math, re, sys, time, wave, argparse, numpy as np
from phonemizer.phonemize import default_separator, _phonemize
from phonemizer.backend import EspeakBackend
from phonemizer.punctuation import Punctuation
from functools import reduce
from pathlib import Path
from typing import List
from tinygrad import nn, dtypes
from tinygrad.helpers import fetch
from tinygrad.nn.state import torch_load
from tinygrad.tensor import Tensor
from tinygrad.engine.jit import TinyJit
from unidecode import unidecode
LRELU_SLOPE = 0.1
class Synthesizer:
def __init__(self, n_vocab, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, n_speakers=0, gin_channels=0, use_sdp=True, emotion_embedding=False, **kwargs):
self.n_vocab, self.spec_channels, self.inter_channels, self.hidden_channels, self.filter_channels, self.n_heads, self.n_layers, self.kernel_size, self.p_dropout, self.resblock, self.resblock_kernel_sizes, self.resblock_dilation_sizes, self.upsample_rates, self.upsample_initial_channel, self.upsample_kernel_sizes, self.segment_size, self.n_speakers, self.gin_channels, self.use_sdp = n_vocab, spec_channels, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, segment_size, n_speakers, gin_channels, use_sdp
self.enc_p = TextEncoder(n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, emotion_embedding)
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels) if use_sdp else DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
if n_speakers > 1: self.emb_g = nn.Embedding(n_speakers, gin_channels)
def infer(self, x, x_lengths, sid=None, noise_scale=1.0, length_scale=1, noise_scale_w=1., max_len=None, emotion_embedding=None, max_y_length_estimate_scale=None, pad_length=-1):
x, m_p, logs_p, x_mask = self.enc_p.forward(x.realize(), x_lengths.realize(), emotion_embedding.realize() if emotion_embedding is not None else emotion_embedding)
g = self.emb_g(sid.reshape(1, 1)).squeeze(1).unsqueeze(-1) if self.n_speakers > 0 else None
logw = self.dp.forward(x, x_mask.realize(), g=g.realize(), reverse=self.use_sdp, noise_scale=noise_scale_w if self.use_sdp else 1.0)
w_ceil = Tensor.ceil(logw.exp() * x_mask * length_scale)
y_lengths = Tensor.maximum(w_ceil.sum([1, 2]), 1).cast(dtypes.int64)
return self.generate(g, logs_p, m_p, max_len, max_y_length_estimate_scale, noise_scale, w_ceil, x, x_mask, y_lengths, pad_length)
def generate(self, g, logs_p, m_p, max_len, max_y_length_estimate_scale, noise_scale, w_ceil, x, x_mask, y_lengths, pad_length):
max_y_length = y_lengths.max().item() if max_y_length_estimate_scale is None else max(15, x.shape[-1]) * max_y_length_estimate_scale
y_mask = sequence_mask(y_lengths, max_y_length).unsqueeze(1).cast(x_mask.dtype)
attn_mask = x_mask.unsqueeze(2) * y_mask.unsqueeze(-1)
attn = generate_path(w_ceil, attn_mask)
m_p_2 = attn.squeeze(1).matmul(m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
logs_p_2 = attn.squeeze(1).matmul(logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
z_p = m_p_2 + Tensor.randn(*m_p_2.shape, dtype=m_p_2.dtype) * logs_p_2.exp() * noise_scale
row_len = y_mask.shape[2]
if pad_length > -1:
# Pad flow forward inputs to enable JIT
assert pad_length > row_len, "pad length is too small"
y_mask = y_mask.pad(((0, 0), (0, 0), (0, pad_length - row_len))).cast(z_p.dtype)
# New y_mask tensor to remove sts mask
y_mask = Tensor(y_mask.numpy(), device=y_mask.device, dtype=y_mask.dtype, requires_grad=y_mask.requires_grad)
z_p = z_p.squeeze(0).pad(((0, 0), (0, pad_length - z_p.shape[2])), value=1).unsqueeze(0)
z = self.flow.forward(z_p.realize(), y_mask.realize(), g=g.realize(), reverse=True)
result_length = reduce(lambda x, y: x * y, self.dec.upsample_rates, row_len)
o = self.dec.forward((z * y_mask)[:, :, :max_len], g=g)[:, :, :result_length]
if max_y_length_estimate_scale is not None:
length_scaler = o.shape[-1] / max_y_length
o.realize()
real_max_y_length = y_lengths.max().numpy()
if real_max_y_length > max_y_length:
logging.warning(f"Underestimated max length by {(((real_max_y_length / max_y_length) * 100) - 100):.2f}%, recomputing inference without estimate...")
return self.generate(g, logs_p, m_p, max_len, None, noise_scale, w_ceil, x, x_mask, y_lengths)
if real_max_y_length < max_y_length:
overestimation = ((max_y_length / real_max_y_length) * 100) - 100
logging.info(f"Overestimated max length by {overestimation:.2f}%")
if overestimation > 10: logging.warning("Warning: max length overestimated by more than 10%")
o = o[:, :, :(real_max_y_length * length_scaler).astype(np.int32)]
return o
class StochasticDurationPredictor:
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
filter_channels = in_channels # it needs to be removed from future version.
self.in_channels, self.filter_channels, self.kernel_size, self.p_dropout, self.n_flows, self.gin_channels = in_channels, filter_channels, kernel_size, p_dropout, n_flows, gin_channels
self.log_flow, self.flows = Log(), [ElementwiseAffine(2)]
for _ in range(n_flows):
self.flows.append(ConvFlow(2, filter_channels, kernel_size, n_layers=3))
self.flows.append(Flip())
self.post_pre, self.post_proj = nn.Conv1d(1, filter_channels, 1), nn.Conv1d(filter_channels, filter_channels, 1)
self.post_convs = DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
self.post_flows = [ElementwiseAffine(2)]
for _ in range(4):
self.post_flows.append(ConvFlow(2, filter_channels, kernel_size, n_layers=3))
self.post_flows.append(Flip())
self.pre, self.proj = nn.Conv1d(in_channels, filter_channels, 1), nn.Conv1d(filter_channels, filter_channels, 1)
self.convs = DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
@TinyJit
def forward(self, x: Tensor, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
x = self.pre(x.detach())
if g is not None: x = x + self.cond(g.detach())
x = self.convs.forward(x, x_mask)
x = self.proj(x) * x_mask
if not reverse:
flows = self.flows
assert w is not None
log_det_tot_q = 0
h_w = self.post_proj(self.post_convs.forward(self.post_pre(w), x_mask)) * x_mask
e_q = Tensor.randn(w.size(0), 2, w.size(2), dtype=x.dtype).to(device=x.device) * x_mask
z_q = e_q
for flow in self.post_flows:
z_q, log_det_q = flow.forward(z_q, x_mask, g=(x + h_w))
log_det_tot_q += log_det_q
z_u, z1 = z_q.split([1, 1], 1)
u = z_u.sigmoid() * x_mask
z0 = (w - u) * x_mask
log_det_tot_q += Tensor.sum((z_u.logsigmoid() + (-z_u).logsigmoid()) * x_mask, [1,2])
log_q = Tensor.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - log_det_tot_q
log_det_tot = 0
z0, log_det = self.log_flow.forward(z0, x_mask)
log_det_tot += log_det
z = z0.cat(z1, 1)
for flow in flows:
z, log_det = flow.forward(z, x_mask, g=x, reverse=reverse)
log_det_tot = log_det_tot + log_det
nll = Tensor.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - log_det_tot
return (nll + log_q).realize() # [b]
flows = list(reversed(self.flows))
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
z = Tensor.randn(x.shape[0], 2, x.shape[2], dtype=x.dtype).to(device=x.device) * noise_scale
for flow in flows: z = flow.forward(z, x_mask, g=x, reverse=reverse)
z0, z1 = z.split([1, 1], 1)
return z0.realize()
class DurationPredictor:
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
self.in_channels, self.filter_channels, self.kernel_size, self.p_dropout, self.gin_channels = in_channels, filter_channels, kernel_size, p_dropout, gin_channels
self.conv_1, self.norm_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2), LayerNorm(filter_channels)
self.conv_2, self.norm_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2), LayerNorm(filter_channels)
self.proj = nn.Conv1d(filter_channels, 1, 1)
if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, in_channels, 1)
def forward(self, x: Tensor, x_mask, g=None):
x = x.detach()
if g is not None: x = x + self.cond(g.detach())
x = self.conv_1(x * x_mask).relu()
x = self.norm_1(x).dropout(self.p_dropout)
x = self.conv_2(x * x_mask).relu(x)
x = self.norm_2(x).dropout(self.p_dropout)
return self.proj(x * x_mask) * x_mask
class TextEncoder:
def __init__(self, n_vocab, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, emotion_embedding):
self.n_vocab, self.out_channels, self.hidden_channels, self.filter_channels, self.n_heads, self.n_layers, self.kernel_size, self.p_dropout = n_vocab, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
if n_vocab!=0:self.emb = nn.Embedding(n_vocab, hidden_channels)
if emotion_embedding: self.emo_proj = nn.Linear(1024, hidden_channels)
self.encoder = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
@TinyJit
def forward(self, x: Tensor, x_lengths: Tensor, emotion_embedding=None):
if self.n_vocab!=0: x = (self.emb(x) * math.sqrt(self.hidden_channels))
if emotion_embedding: x = x + self.emo_proj(emotion_embedding).unsqueeze(1)
x = x.transpose(1, -1) # [b, t, h] -transpose-> [b, h, t]
x_mask = sequence_mask(x_lengths, x.shape[2]).unsqueeze(1).cast(x.dtype)
x = self.encoder.forward(x * x_mask, x_mask)
m, logs = (self.proj(x) * x_mask).split(self.out_channels, dim=1)
return x.realize(), m.realize(), logs.realize(), x_mask.realize()
class ResidualCouplingBlock:
def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0):
self.channels, self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.n_flows, self.gin_channels = channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows, gin_channels
self.flows = []
for _ in range(n_flows):
self.flows.append(ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
self.flows.append(Flip())
@TinyJit
def forward(self, x, x_mask, g=None, reverse=False):
for flow in reversed(self.flows) if reverse else self.flows: x = flow.forward(x, x_mask, g=g, reverse=reverse)
return x.realize()
class PosteriorEncoder:
def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0):
self.in_channels, self.out_channels, self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.gin_channels = in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels
self.pre, self.proj = nn.Conv1d(in_channels, hidden_channels, 1), nn.Conv1d(hidden_channels, out_channels * 2, 1)
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
def forward(self, x, x_lengths, g=None):
x_mask = sequence_mask(x_lengths, x.size(2)).unsqueeze(1).cast(x.dtype)
stats = self.proj(self.enc.forward(self.pre(x) * x_mask, x_mask, g=g)) * x_mask
m, logs = stats.split(self.out_channels, dim=1)
z = (m + Tensor.randn(m.shape, m.dtype) * logs.exp()) * x_mask
return z, m, logs, x_mask
class Generator:
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
self.num_kernels, self.num_upsamples = len(resblock_kernel_sizes), len(upsample_rates)
self.conv_pre = nn.Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
resblock = ResBlock1 if resblock == '1' else ResBlock2
self.ups = [nn.ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), k, u, padding=(k-u)//2) for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes))]
self.resblocks = []
self.upsample_rates = upsample_rates
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.conv_post = nn.Conv1d(ch, 1, 7, 1, padding=3, bias=False)
if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
@TinyJit
def forward(self, x: Tensor, g=None):
x = self.conv_pre(x)
if g is not None: x = x + self.cond(g)
for i in range(self.num_upsamples):
x = self.ups[i](x.leaky_relu(LRELU_SLOPE))
xs = sum(self.resblocks[i * self.num_kernels + j].forward(x) for j in range(self.num_kernels))
x = (xs / self.num_kernels).realize()
res = self.conv_post(x.leaky_relu()).tanh().realize()
return res
class LayerNorm(nn.LayerNorm):
def __init__(self, channels, eps=1e-5): super().__init__(channels, eps, elementwise_affine=True)
def forward(self, x: Tensor): return self.__call__(x.transpose(1, -1)).transpose(1, -1)
class WN:
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
assert (kernel_size % 2 == 1)
self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.gin_channels, self.p_dropout = hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels, p_dropout
self.in_layers, self.res_skip_layers = [], []
if gin_channels != 0: self.cond_layer = nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
for i in range(n_layers):
dilation = dilation_rate ** i
self.in_layers.append(nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=int((kernel_size * dilation - dilation) / 2)))
self.res_skip_layers.append(nn.Conv1d(hidden_channels, 2 * hidden_channels if i < n_layers - 1 else hidden_channels, 1))
def forward(self, x, x_mask, g=None, **kwargs):
output = Tensor.zeros_like(x)
if g is not None: g = self.cond_layer(g)
for i in range(self.n_layers):
x_in = self.in_layers[i](x)
if g is not None:
cond_offset = i * 2 * self.hidden_channels
g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :]
else:
g_l = Tensor.zeros_like(x_in)
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, self.hidden_channels)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
x = (x + res_skip_acts[:, :self.hidden_channels, :]) * x_mask
output = output + res_skip_acts[:, self.hidden_channels:, :]
else:
output = output + res_skip_acts
return output * x_mask
class ResBlock1:
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
self.convs1 = [nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[i], padding=get_padding(kernel_size, dilation[i])) for i in range(3)]
self.convs2 = [nn.Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) for _ in range(3)]
def forward(self, x: Tensor, x_mask=None):
for c1, c2 in zip(self.convs1, self.convs2):
xt = x.leaky_relu(LRELU_SLOPE)
xt = c1(xt if x_mask is None else xt * x_mask).leaky_relu(LRELU_SLOPE)
x = c2(xt if x_mask is None else xt * x_mask) + x
return x if x_mask is None else x * x_mask
class ResBlock2:
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
self.convs = [nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[i], padding=get_padding(kernel_size, dilation[i])) for i in range(2)]
def forward(self, x, x_mask=None):
for c in self.convs:
xt = x.leaky_relu(LRELU_SLOPE)
xt = c(xt if x_mask is None else xt * x_mask)
x = xt + x
return x if x_mask is None else x * x_mask
class DDSConv: # Dilated and Depth-Separable Convolution
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
self.channels, self.kernel_size, self.n_layers, self.p_dropout = channels, kernel_size, n_layers, p_dropout
self.convs_sep, self.convs_1x1, self.norms_1, self.norms_2 = [], [], [], []
for i in range(n_layers):
dilation = kernel_size ** i
padding = (kernel_size * dilation - dilation) // 2
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding))
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
self.norms_1.append(LayerNorm(channels))
self.norms_2.append(LayerNorm(channels))
def forward(self, x, x_mask, g=None):
if g is not None: x = x + g
for i in range(self.n_layers):
y = self.convs_sep[i](x * x_mask)
y = self.norms_1[i].forward(y).gelu()
y = self.convs_1x1[i](y)
y = self.norms_2[i].forward(y).gelu()
x = x + y.dropout(self.p_dropout)
return x * x_mask
class ConvFlow:
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
self.in_channels, self.filter_channels, self.kernel_size, self.n_layers, self.num_bins, self.tail_bound = in_channels, filter_channels, kernel_size, n_layers, num_bins, tail_bound
self.half_channels = in_channels // 2
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = x.split([self.half_channels] * 2, 1)
h = self.proj(self.convs.forward(self.pre(x0), x_mask, g=g)) * x_mask
b, c, t = x0.shape
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
un_normalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
un_normalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
un_normalized_derivatives = h[..., 2 * self.num_bins:]
x1, log_abs_det = piecewise_rational_quadratic_transform(x1, un_normalized_widths, un_normalized_heights, un_normalized_derivatives, inverse=reverse, tails='linear', tail_bound=self.tail_bound)
x = x0.cat(x1, dim=1) * x_mask
return x if reverse else (x, Tensor.sum(log_abs_det * x_mask, [1,2]))
class ResidualCouplingLayer:
def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False):
assert channels % 2 == 0, "channels should be divisible by 2"
self.channels, self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.mean_only = channels, hidden_channels, kernel_size, dilation_rate, n_layers, mean_only
self.half_channels = channels // 2
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = x.split([self.half_channels] * 2, 1)
stats = self.post(self.enc.forward(self.pre(x0) * x_mask, x_mask, g=g)) * x_mask
if not self.mean_only:
m, logs = stats.split([self.half_channels] * 2, 1)
else:
m = stats
logs = Tensor.zeros_like(m)
if not reverse: return x0.cat((m + x1 * logs.exp() * x_mask), dim=1)
return x0.cat(((x1 - m) * (-logs).exp() * x_mask), dim=1)
class Log:
def forward(self, x : Tensor, x_mask, reverse=False):
if not reverse:
y = x.maximum(1e-5).log() * x_mask
return y, (-y).sum([1, 2])
return x.exp() * x_mask
class Flip:
def forward(self, x: Tensor, *args, reverse=False, **kwargs):
return x.flip([1]) if reverse else (x.flip([1]), Tensor.zeros(x.shape[0], dtype=x.dtype).to(device=x.device))
class ElementwiseAffine:
def __init__(self, channels): self.m, self.logs = Tensor.zeros(channels, 1), Tensor.zeros(channels, 1)
def forward(self, x, x_mask, reverse=False, **kwargs): # x if reverse else y, logdet
return (x - self.m) * Tensor.exp(-self.logs) * x_mask if reverse \
else ((self.m + Tensor.exp(self.logs) * x) * x_mask, Tensor.sum(self.logs * x_mask, [1, 2]))
class MultiHeadAttention:
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
assert channels % n_heads == 0
self.channels, self.out_channels, self.n_heads, self.p_dropout, self.window_size, self.heads_share, self.block_length, self.proximal_bias, self.proximal_init = channels, out_channels, n_heads, p_dropout, window_size, heads_share, block_length, proximal_bias, proximal_init
self.attn, self.k_channels = None, channels // n_heads
self.conv_q, self.conv_k, self.conv_v = [nn.Conv1d(channels, channels, 1) for _ in range(3)]
self.conv_o = nn.Conv1d(channels, out_channels, 1)
if window_size is not None: self.emb_rel_k, self.emb_rel_v = [Tensor.randn(1 if heads_share else n_heads, window_size * 2 + 1, self.k_channels) * (self.k_channels ** -0.5) for _ in range(2)]
def forward(self, x, c, attn_mask=None):
q, k, v = self.conv_q(x), self.conv_k(c), self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
return self.conv_o(x)
def attention(self, query: Tensor, key: Tensor, value: Tensor, mask=None):# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s, t_t = key.shape[0], key.shape[1], key.shape[2], query.shape[2]
query = query.reshape(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.reshape(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.reshape(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = (query / math.sqrt(self.k_channels)) @ key.transpose(-2, -1)
if self.window_size is not None:
assert t_s == t_t, "Relative attention is only available for self-attention."
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
scores = scores + self._relative_position_to_absolute_position(rel_logits)
if mask is not None:
scores = Tensor.where(mask, scores, -1e4)
if self.block_length is not None:
assert t_s == t_t, "Local attention is only available for self-attention."
scores = Tensor.where(Tensor.ones_like(scores).triu(-self.block_length).tril(self.block_length), scores, -1e4)
p_attn = scores.softmax(axis=-1) # [b, n_h, t_t, t_s]
output = p_attn.matmul(value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
output = output.transpose(2, 3).contiguous().reshape(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output, p_attn
def _matmul_with_relative_values(self, x, y): return x.matmul(y.unsqueeze(0)) # x: [b, h, l, m], y: [h or 1, m, d], ret: [b, h, l, d]
def _matmul_with_relative_keys(self, x, y): return x.matmul(y.unsqueeze(0).transpose(-2, -1)) # x: [b, h, l, d], y: [h or 1, m, d], re, : [b, h, l, m]
def _get_relative_embeddings(self, relative_embeddings, length):
pad_length, slice_start_position = max(length - (self.window_size + 1), 0), max((self.window_size + 1) - length, 0)
padded_relative_embeddings = relative_embeddings if pad_length <= 0\
else relative_embeddings.pad(convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
return padded_relative_embeddings[:, slice_start_position:(slice_start_position + 2 * length - 1)] #used_relative_embeddings
def _relative_position_to_absolute_position(self, x: Tensor): # x: [b, h, l, 2*l-1] -> [b, h, l, l]
batch, heads, length, _ = x.shape
x = x.pad(convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
x_flat = x.reshape([batch, heads, length * 2 * length]).pad(convert_pad_shape([[0,0],[0,0],[0,length-1]]))
return x_flat.reshape([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
def _absolute_position_to_relative_position(self, x: Tensor): # x: [b, h, l, l] -> [b, h, l, 2*l-1]
batch, heads, length, _ = x.shape
x = x.pad(convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
x_flat = x.reshape([batch, heads, length**2 + length*(length -1)]).pad(convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
return x_flat.reshape([batch, heads, length, 2*length])[:,:,:,1:]
class FFN:
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
self.in_channels, self.out_channels, self.filter_channels, self.kernel_size, self.p_dropout, self.activation, self.causal = in_channels, out_channels, filter_channels, kernel_size, p_dropout, activation, causal
self.padding = self._causal_padding if causal else self._same_padding
self.conv_1, self.conv_2 = nn.Conv1d(in_channels, filter_channels, kernel_size), nn.Conv1d(filter_channels, out_channels, kernel_size)
def forward(self, x, x_mask):
x = self.conv_1(self.padding(x * x_mask))
x = x * (1.702 * x).sigmoid() if self.activation == "gelu" else x.relu()
return self.conv_2(self.padding(x.dropout(self.p_dropout) * x_mask)) * x_mask
def _causal_padding(self, x):return x if self.kernel_size == 1 else x.pad(convert_pad_shape([[0, 0], [0, 0], [self.kernel_size - 1, 0]]))
def _same_padding(self, x): return x if self.kernel_size == 1 else x.pad(convert_pad_shape([[0, 0], [0, 0], [(self.kernel_size - 1) // 2, self.kernel_size // 2]]))
class Encoder:
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
self.hidden_channels, self.filter_channels, self.n_heads, self.n_layers, self.kernel_size, self.p_dropout, self.window_size = hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, window_size
self.attn_layers, self.norm_layers_1, self.ffn_layers, self.norm_layers_2 = [], [], [], []
for _ in range(n_layers):
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask):
attn_mask, x = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1), x * x_mask
for i in range(self.n_layers):
y = self.attn_layers[i].forward(x, x, attn_mask).dropout(self.p_dropout)
x = self.norm_layers_1[i].forward(x + y)
y = self.ffn_layers[i].forward(x, x_mask).dropout(self.p_dropout)
x = self.norm_layers_2[i].forward(x + y)
return x * x_mask
DEFAULT_MIN_BIN_WIDTH, DEFAULT_MIN_BIN_HEIGHT, DEFAULT_MIN_DERIVATIVE = 1e-3, 1e-3, 1e-3
def piecewise_rational_quadratic_transform(inputs, un_normalized_widths, un_normalized_heights, un_normalized_derivatives, inverse=False, tails=None, tail_bound=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
if tails is None: spline_fn, spline_kwargs = rational_quadratic_spline, {}
else: spline_fn, spline_kwargs = unconstrained_rational_quadratic_spline, {'tails': tails, 'tail_bound': tail_bound}
return spline_fn(inputs=inputs, un_normalized_widths=un_normalized_widths, un_normalized_heights=un_normalized_heights, un_normalized_derivatives=un_normalized_derivatives, inverse=inverse, min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative, **spline_kwargs)
def unconstrained_rational_quadratic_spline(inputs, un_normalized_widths, un_normalized_heights, un_normalized_derivatives, inverse=False, tails='linear', tail_bound=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
if not tails == 'linear': raise RuntimeError('{} tails are not implemented.'.format(tails))
constant = np.log(np.exp(1 - min_derivative) - 1).item()
un_normalized_derivatives = cat_lr(un_normalized_derivatives, constant, constant)
output, log_abs_det = rational_quadratic_spline(inputs=inputs.squeeze(dim=0).squeeze(dim=0), unnormalized_widths=un_normalized_widths.squeeze(dim=0).squeeze(dim=0), unnormalized_heights=un_normalized_heights.squeeze(dim=0).squeeze(dim=0), unnormalized_derivatives=un_normalized_derivatives.squeeze(dim=0).squeeze(dim=0), inverse=inverse, left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound, min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative)
return output.unsqueeze(dim=0).unsqueeze(dim=0), log_abs_det.unsqueeze(dim=0).unsqueeze(dim=0)
def rational_quadratic_spline(inputs: Tensor, unnormalized_widths: Tensor, unnormalized_heights: Tensor, unnormalized_derivatives: Tensor, inverse=False, left=0., right=1., bottom=0., top=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
num_bins = unnormalized_widths.shape[-1]
if min_bin_width * num_bins > 1.0: raise ValueError('Minimal bin width too large for the number of bins')
if min_bin_height * num_bins > 1.0: raise ValueError('Minimal bin height too large for the number of bins')
widths = min_bin_width + (1 - min_bin_width * num_bins) * unnormalized_widths.softmax(axis=-1)
cum_widths = cat_lr(((right - left) * widths[..., :-1].cumsum(axis=1) + left), left, right + 1e-6 if not inverse else right)
widths = cum_widths[..., 1:] - cum_widths[..., :-1]
derivatives = min_derivative + (unnormalized_derivatives.exp()+1).log()
heights = min_bin_height + (1 - min_bin_height * num_bins) * unnormalized_heights.softmax(axis=-1)
cum_heights = cat_lr(((top - bottom) * heights[..., :-1].cumsum(axis=1) + bottom), bottom, top + 1e-6 if inverse else top)
heights = cum_heights[..., 1:] - cum_heights[..., :-1]
bin_idx = ((inputs[..., None] >= (cum_heights if inverse else cum_widths)).sum(axis=-1) - 1)[..., None]
input_cum_widths = gather(cum_widths, bin_idx, axis=-1)[..., 0]
input_bin_widths = gather(widths, bin_idx, axis=-1)[..., 0]
input_cum_heights = gather(cum_heights, bin_idx, axis=-1)[..., 0]
input_delta = gather(heights / widths, bin_idx, axis=-1)[..., 0]
input_derivatives = gather(derivatives, bin_idx, axis=-1)[..., 0]
input_derivatives_plus_one = gather(derivatives[..., 1:], bin_idx, axis=-1)[..., 0]
input_heights = gather(heights, bin_idx, axis=-1)[..., 0]
if inverse:
a = ((inputs - input_cum_heights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta) + input_heights * (input_delta - input_derivatives))
b = (input_heights * input_derivatives - (inputs - input_cum_heights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta))
c = - input_delta * (inputs - input_cum_heights)
discriminant = b.square() - 4 * a * c
# assert (discriminant.numpy() >= 0).all()
root = (2 * c) / (-b - discriminant.sqrt())
theta_one_minus_theta = root * (1 - root)
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta)
derivative_numerator = input_delta.square() * (input_derivatives_plus_one * root.square() + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - root).square())
return root * input_bin_widths + input_cum_widths, -(derivative_numerator.log() - 2 * denominator.log())
theta = (inputs - input_cum_widths) / input_bin_widths
theta_one_minus_theta = theta * (1 - theta)
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta)
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta)
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - theta).pow(2))
return input_cum_heights + numerator / denominator, derivative_numerator.log() - 2 * denominator.log()
def sequence_mask(length: Tensor, max_length): return Tensor.arange(max_length, dtype=length.dtype, device=length.device).unsqueeze(0) < length.unsqueeze(1)
def generate_path(duration: Tensor, mask: Tensor): # duration: [b, 1, t_x], mask: [b, 1, t_y, t_x]
b, _, t_y, t_x = mask.shape
path = sequence_mask(duration.cumsum(axis=2).reshape(b * t_x), t_y).cast(mask.dtype).reshape(b, t_x, t_y)
path = path - path.pad(convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
return path.unsqueeze(1).transpose(2, 3) * mask
def fused_add_tanh_sigmoid_multiply(input_a: Tensor, input_b: Tensor, n_channels: int):
n_channels_int, in_act = n_channels, input_a + input_b
t_act, s_act = in_act[:, :n_channels_int, :].tanh(), in_act[:, n_channels_int:, :].sigmoid()
return t_act * s_act
def cat_lr(t, left, right): return Tensor.full(get_shape(t), left).cat(t, dim=-1).cat(Tensor.full(get_shape(t), right), dim=-1)
def get_shape(tensor):
(shape := list(tensor.shape))[-1] = 1
return tuple(shape)
def convert_pad_shape(pad_shape): return tuple(tuple(x) for x in pad_shape)
def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2)
def gather(x, indices, axis):
indices = (indices < 0).where(indices + x.shape[axis], indices).transpose(0, axis)
permute_args = list(range(x.ndim))
permute_args[0], permute_args[axis] = permute_args[axis], permute_args[0]
permute_args.append(permute_args.pop(0))
x = x.permute(*permute_args)
reshape_arg = [1] * x.ndim + [x.shape[-1]]
return ((indices.unsqueeze(indices.ndim).expand(*indices.shape, x.shape[-1]) ==
Tensor.arange(x.shape[-1]).reshape(*reshape_arg).expand(*indices.shape, x.shape[-1])) * x).sum(indices.ndim).transpose(0, axis)
def norm_except_dim(v, dim):
if dim == -1: return np.linalg.norm(v)
if dim == 0:
(output_shape := [1] * v.ndim)[0] = v.shape[0]
return np.linalg.norm(v.reshape(v.shape[0], -1), axis=1).reshape(output_shape)
if dim == v.ndim - 1:
(output_shape := [1] * v.ndim)[-1] = v.shape[-1]
return np.linalg.norm(v.reshape(-1, v.shape[-1]), axis=0).reshape(output_shape)
transposed_v = np.transpose(v, (dim,) + tuple(i for i in range(v.ndim) if i != dim))
return np.transpose(norm_except_dim(transposed_v, 0), (dim,) + tuple(i for i in range(v.ndim) if i != dim))
def weight_norm(v: Tensor, g: Tensor, dim):
v, g = v.numpy(), g.numpy()
return Tensor(v * (g / norm_except_dim(v, dim)))
# HPARAMS LOADING
def get_hparams_from_file(path):
with open(path, "r") as f:
data = f.read()
return HParams(**json.loads(data))
class HParams:
def __init__(self, **kwargs):
for k, v in kwargs.items(): self[k] = v if type(v) != dict else HParams(**v)
def keys(self): return self.__dict__.keys()
def items(self): return self.__dict__.items()
def values(self): return self.__dict__.values()
def __len__(self): return len(self.__dict__)
def __getitem__(self, key): return getattr(self, key)
def __setitem__(self, key, value): return setattr(self, key, value)
def __contains__(self, key): return key in self.__dict__
def __repr__(self): return self.__dict__.__repr__()
# MODEL LOADING
def load_model(symbols, hps, model) -> Synthesizer:
net_g = Synthesizer(len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers = hps.data.n_speakers, **hps.model)
_ = load_checkpoint(fetch(model[1]), net_g, None)
return net_g
def load_checkpoint(checkpoint_path, model: Synthesizer, optimizer=None, skip_list=[]):
assert Path(checkpoint_path).is_file()
start_time = time.time()
checkpoint_dict = torch_load(checkpoint_path)
iteration, learning_rate = checkpoint_dict['iteration'], checkpoint_dict['learning_rate']
if optimizer: optimizer.load_state_dict(checkpoint_dict['optimizer'])
saved_state_dict = checkpoint_dict['model']
weight_g, weight_v, parent = None, None, None
for key, v in saved_state_dict.items():
if any(layer in key for layer in skip_list): continue
try:
obj, skip = model, False
for k in key.split('.'):
if k.isnumeric(): obj = obj[int(k)]
elif isinstance(obj, dict): obj = obj[k]
else:
if isinstance(obj, (LayerNorm, nn.LayerNorm)) and k in ["gamma", "beta"]:
k = "weight" if k == "gamma" else "bias"
elif k in ["weight_g", "weight_v"]:
parent, skip = obj, True
if k == "weight_g": weight_g = v
else: weight_v = v
if not skip: obj = getattr(obj, k)
if weight_g is not None and weight_v is not None:
setattr(obj, "weight_g", weight_g.numpy())
setattr(obj, "weight_v", weight_v.numpy())
obj, v = getattr(parent, "weight"), weight_norm(weight_v, weight_g, 0)
weight_g, weight_v, parent, skip = None, None, None, False
if not skip and obj.shape == v.shape: obj.assign(v.to(obj.device))
elif not skip: logging.error(f"MISMATCH SHAPE IN {key}, {obj.shape} {v.shape}")
except Exception as e: raise e
logging.info(f"Loaded checkpoint '{checkpoint_path}' (iteration {iteration}) in {time.time() - start_time:.4f}s")
return model, optimizer, learning_rate, iteration
# Used for cleaning input text and mapping to symbols
class TextMapper: # Based on https://github.com/keithito/tacotron
def __init__(self, symbols, apply_cleaners=True):
self.apply_cleaners, self.symbols, self._inflect = apply_cleaners, symbols, None
self._symbol_to_id, _id_to_symbol = {s: i for i, s in enumerate(symbols)}, {i: s for i, s in enumerate(symbols)}
self._whitespace_re, self._abbreviations = re.compile(r'\s+'), [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [('mrs', 'misess'), ('mr', 'mister'), ('dr', 'doctor'), ('st', 'saint'), ('co', 'company'), ('jr', 'junior'), ('maj', 'major'), ('gen', 'general'), ('drs', 'doctors'), ('rev', 'reverend'), ('lt', 'lieutenant'), ('hon', 'honorable'), ('sgt', 'sergeant'), ('capt', 'captain'), ('esq', 'esquire'), ('ltd', 'limited'), ('col', 'colonel'), ('ft', 'fort'), ]]
self.phonemizer = EspeakBackend(
language="en-us", punctuation_marks=Punctuation.default_marks(), preserve_punctuation=True, with_stress=True,
)
def text_to_sequence(self, text, cleaner_names):
if self.apply_cleaners:
for name in cleaner_names:
cleaner = getattr(self, name)
if not cleaner: raise ModuleNotFoundError('Unknown cleaner: %s' % name)
text = cleaner(text)
else: text = text.strip()
return [self._symbol_to_id[symbol] for symbol in text]
def get_text(self, text, add_blank=False, cleaners=('english_cleaners2',)):
text_norm = self.text_to_sequence(text, cleaners)
return Tensor(self.intersperse(text_norm, 0) if add_blank else text_norm, dtype=dtypes.int64)
def intersperse(self, lst, item):
(result := [item] * (len(lst) * 2 + 1))[1::2] = lst
return result
def phonemize(self, text, strip=True): return _phonemize(self.phonemizer, text, default_separator, strip, 1, False, False)
def filter_oov(self, text): return "".join(list(filter(lambda x: x in self._symbol_to_id, text)))
def base_english_cleaners(self, text): return self.collapse_whitespace(self.phonemize(self.expand_abbreviations(unidecode(text.lower()))))
def english_cleaners2(self, text): return self.base_english_cleaners(text)
def transliteration_cleaners(self, text): return self.collapse_whitespace(unidecode(text.lower()))
def cjke_cleaners(self, text): return re.sub(r'([^\.,!\?\-…~])$', r'\1.', re.sub(r'\s+$', '', self.english_to_ipa2(text).replace('ɑ', 'a').replace('ɔ', 'o').replace('ɛ', 'e').replace('ɪ', 'i').replace('ʊ', 'u')))
def cjke_cleaners2(self, text): return re.sub(r'([^\.,!\?\-…~])$', r'\1.', re.sub(r'\s+$', '', self.english_to_ipa2(text)))
def cjks_cleaners(self, text): return re.sub(r'([^\.,!\?\-…~])$', r'\1.', re.sub(r'\s+$', '', self.english_to_lazy_ipa(text)))
def english_to_ipa2(self, text):
_ipa_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [ ('r', 'ɹ'), ('ʤ', ''), ('ʧ', '')]]
return reduce(lambda t, rx: re.sub(rx[0], rx[1], t), _ipa_to_ipa2, self.mark_dark_l(self.english_to_ipa(text))).replace('...', '')
def mark_dark_l(self, text): return re.sub(r'l([^aeiouæɑɔəɛɪʊ ]*(?: |$))', lambda x: 'ɫ' + x.group(1), text)
def english_to_ipa(self, text):
import eng_to_ipa as ipa
return self.collapse_whitespace(ipa.convert(self.normalize_numbers(self.expand_abbreviations(unidecode(text).lower()))))
def english_to_lazy_ipa(self, text):
_lazy_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [('r', 'ɹ'), ('æ', 'e'), ('ɑ', 'a'), ('ɔ', 'o'), ('ð', 'z'), ('θ', 's'), ('ɛ', 'e'), ('ɪ', 'i'), ('ʊ', 'u'), ('ʒ', 'ʥ'), ('ʤ', 'ʥ'), ('ˈ', '')]]
return reduce(lambda t, rx: re.sub(rx[0], rx[1], t), _lazy_ipa, self.english_to_ipa(text))
def expand_abbreviations(self, text): return reduce(lambda t, abbr: re.sub(abbr[0], abbr[1], t), self._abbreviations, text)
def collapse_whitespace(self, text): return re.sub(self._whitespace_re, ' ', text)
def normalize_numbers(self, text):
import inflect
self._inflect = inflect.engine()
text = re.sub(re.compile(r'([0-9][0-9\,]+[0-9])'), self._remove_commas, text)
text = re.sub(re.compile(r'£([0-9\,]*[0-9]+)'), r'\1 pounds', text)
text = re.sub(re.compile(r'\$([0-9\.\,]*[0-9]+)'), self._expand_dollars, text)
text = re.sub(re.compile(r'([0-9]+\.[0-9]+)'), self._expand_decimal_point, text)
text = re.sub(re.compile(r'[0-9]+(st|nd|rd|th)'), self._expand_ordinal, text)
text = re.sub(re.compile(r'[0-9]+'), self._expand_number, text)
return text
def _remove_commas(self, m): return m.group(1).replace(',', '') # george won't like this
def _expand_dollars(self, m):
match = m.group(1)
parts = match.split('.')
if len(parts) > 2: return match + ' dollars' # Unexpected format
dollars, cents = int(parts[0]) if parts[0] else 0, int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents: return '%s %s, %s %s' % (dollars, 'dollar' if dollars == 1 else 'dollars', cents, 'cent' if cents == 1 else 'cents')
if dollars: return '%s %s' % (dollars, 'dollar' if dollars == 1 else 'dollars')
if cents: return '%s %s' % (cents, 'cent' if cents == 1 else 'cents')
return 'zero dollars'
def _expand_decimal_point(self, m): return m.group(1).replace('.', ' point ')
def _expand_ordinal(self, m): return self._inflect.number_to_words(m.group(0))
def _expand_number(self, _inflect, m):
num = int(m.group(0))
if 1000 < num < 3000:
if num == 2000: return 'two thousand'
if 2000 < num < 2010: return 'two thousand ' + self._inflect.number_to_words(num % 100)
if num % 100 == 0: return self._inflect.number_to_words(num // 100) + ' hundred'
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
return self._inflect.number_to_words(num, andword='')
#########################################################################################
# PAPER: https://arxiv.org/abs/2106.06103
# CODE: https://github.com/jaywalnut310/vits/tree/main
#########################################################################################
# INSTALLATION: this is based on default config, dependencies are for preprocessing.
# vctk, ljs | pip3 install unidecode phonemizer | phonemizer requires [eSpeak](https://espeak.sourceforge.net) backend to be installed on your system
# mmts-tts | pip3 install unidecode |
# uma_trilingual, cjks, voistock | pip3 install unidecode inflect eng_to_ipa |
#########################################################################################
# Some good speakers to try out, there may be much better ones, I only tried out a few:
# male vctk 1 | --model_to_use vctk --speaker_id 2
# male vctk 2 | --model_to_use vctk --speaker_id 6
# anime lady 1 | --model_to_use uma_trilingual --speaker_id 36
# anime lady 2 | --model_to_use uma_trilingual --speaker_id 121
#########################################################################################
VITS_PATH = Path(__file__).parents[1] / "weights/VITS/"
MODELS = { # config_url, weights_url
"ljs": ("https://raw.githubusercontent.com/jaywalnut310/vits/main/configs/ljs_base.json", "https://drive.google.com/uc?export=download&id=1q86w74Ygw2hNzYP9cWkeClGT5X25PvBT&confirm=t"),
"vctk": ("https://huggingface.co/csukuangfj/vits-vctk/resolve/main/vctk_base.json", "https://huggingface.co/csukuangfj/vits-vctk/resolve/main/pretrained_vctk.pth"),
"mmts-tts": ("https://huggingface.co/facebook/mms-tts/raw/main/full_models/eng/config.json", "https://huggingface.co/facebook/mms-tts/resolve/main/full_models/eng/G_100000.pth"),
"uma_trilingual": ("https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/raw/main/configs/uma_trilingual.json", "https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/resolve/main/pretrained_models/G_trilingual.pth"),
"cjks": ("https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/14/config.json", "https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/14/model.pth"),
"voistock": ("https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/15/config.json", "https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/15/model.pth"),
}
Y_LENGTH_ESTIMATE_SCALARS = {"ljs": 2.8, "vctk": 1.74, "mmts-tts": 1.9, "uma_trilingual": 2.3, "cjks": 3.3, "voistock": 3.1}
if __name__ == '__main__':
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
parser = argparse.ArgumentParser()
parser.add_argument("--model_to_use", default="vctk", help="Specify the model to use. Default is 'vctk'.")
parser.add_argument("--speaker_id", type=int, default=6, help="Specify the speaker ID. Default is 6.")
parser.add_argument("--out_path", default=None, help="Specify the full output path. Overrides the --out_dir and --name parameter.")
parser.add_argument("--out_dir", default=str(Path(__file__).parents[1] / "temp"), help="Specify the output path.")
parser.add_argument("--base_name", default="test", help="Specify the base of the output file name. Default is 'test'.")
parser.add_argument("--text_to_synthesize", default="""Hello person. If the code you are contributing isn't some of the highest quality code you've written in your life, either put in the effort to make it great, or don't bother.""", help="Specify the text to synthesize. Default is a greeting message.")
parser.add_argument("--noise_scale", type=float, default=0.667, help="Specify the noise scale. Default is 0.667.")
parser.add_argument("--noise_scale_w", type=float, default=0.8, help="Specify the noise scale w. Default is 0.8.")
parser.add_argument("--length_scale", type=float, default=1, help="Specify the length scale. Default is 1.")
parser.add_argument("--seed", type=int, default=1337, help="Specify the seed (set to None if no seed). Default is 1337.")
parser.add_argument("--num_channels", type=int, default=1, help="Specify the number of audio output channels. Default is 1.")
parser.add_argument("--sample_width", type=int, default=2, help="Specify the number of bytes per sample, adjust if necessary. Default is 2.")
parser.add_argument("--emotion_path", type=str, default=None, help="Specify the path to emotion reference.")
parser.add_argument("--estimate_max_y_length", type=str, default=False, help="If true, overestimate the output length and then trim it to the correct length, to prevent premature realization, much more performant for larger inputs, for smaller inputs not so much. Default is False.")
args = parser.parse_args()
model_config = MODELS[args.model_to_use]
# Load the hyperparameters from the config file.
hps = get_hparams_from_file(fetch(model_config[0]))
# If model has multiple speakers, validate speaker id and retrieve name if available.
model_has_multiple_speakers = hps.data.n_speakers > 0
if model_has_multiple_speakers:
logging.info(f"Model has {hps.data.n_speakers} speakers")
if args.speaker_id >= hps.data.n_speakers: raise ValueError(f"Speaker ID {args.speaker_id} is invalid for this model.")
speaker_name = "?"
if hps.__contains__("speakers"): # maps speaker ids to names
speakers = hps.speakers
if isinstance(speakers, List): speakers = {speaker: i for i, speaker in enumerate(speakers)}
speaker_name = next((key for key, value in speakers.items() if value == args.speaker_id), None)
logging.info(f"You selected speaker {args.speaker_id} (name: {speaker_name})")
# Load emotions if any. TODO: find an english model with emotions, this is untested atm.
emotion_embedding = None
if args.emotion_path is not None:
if args.emotion_path.endswith(".npy"): emotion_embedding = Tensor(np.load(args.emotion_path), dtype=dtypes.int64).unsqueeze(0)
else: raise ValueError("Emotion path must be a .npy file.")
# Load symbols, instantiate TextMapper and clean the text.
if hps.__contains__("symbols"): symbols = hps.symbols
elif args.model_to_use == "mmts-tts": symbols = [x.replace("\n", "") for x in fetch("https://huggingface.co/facebook/mms-tts/raw/main/full_models/eng/vocab.txt").open(encoding="utf-8").readlines()]
else: symbols = ['_'] + list(';:,.!?¡¿—…"«»“” ') + list('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz') + list("ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'")
text_mapper = TextMapper(apply_cleaners=True, symbols=symbols)
# Load the model.
if args.seed is not None:
Tensor.manual_seed(args.seed)
np.random.seed(args.seed)
net_g = load_model(text_mapper.symbols, hps, model_config)
logging.debug(f"Loaded model with hps: {hps}")
# Convert the input text to a tensor.
text_to_synthesize = args.text_to_synthesize
if args.model_to_use == "mmts-tts": text_to_synthesize = text_mapper.filter_oov(text_to_synthesize.lower())
stn_tst = text_mapper.get_text(text_to_synthesize, hps.data.add_blank, hps.data.text_cleaners)
logging.debug(f"Converted input text to tensor \"{text_to_synthesize}\" -> Tensor({stn_tst.shape}): {stn_tst.numpy()}")
x_tst, x_tst_lengths = stn_tst.unsqueeze(0), Tensor([stn_tst.shape[0]], dtype=dtypes.int64)
sid = Tensor([args.speaker_id], dtype=dtypes.int64) if model_has_multiple_speakers else None
# Perform inference.
start_time = time.time()
audio_tensor = net_g.infer(x_tst, x_tst_lengths, sid, args.noise_scale, args.length_scale, args.noise_scale_w, emotion_embedding=emotion_embedding,
max_y_length_estimate_scale=Y_LENGTH_ESTIMATE_SCALARS[args.model_to_use] if args.estimate_max_y_length else None)[0, 0].realize()
logging.info(f"Inference took {(time.time() - start_time):.2f}s")
# Save the audio output.
audio_data = (np.clip(audio_tensor.numpy(), -1.0, 1.0) * 32767).astype(np.int16)
out_path = Path(args.out_path or Path(args.out_dir)/f"{args.model_to_use}{f'_sid_{args.speaker_id}' if model_has_multiple_speakers else ''}_{args.base_name}.wav")
out_path.parent.mkdir(parents=True, exist_ok=True)
with wave.open(str(out_path), 'wb') as wav_file:
wav_file.setnchannels(args.num_channels)
wav_file.setsampwidth(args.sample_width)
wav_file.setframerate(hps.data.sampling_rate)
wav_file.setnframes(len(audio_data))
wav_file.writeframes(audio_data.tobytes())
logging.info(f"Saved audio output to {out_path}")