update readme

This commit is contained in:
George Hotz
2020-10-18 13:08:14 -07:00
parent 83417d4b4c
commit 54eafe6c12
2 changed files with 32 additions and 24 deletions

View File

@@ -2,7 +2,9 @@
For something in between a grad and a karpathy/micrograd
The Tensor class is a wrapper around a numpy array
This may not be the best deep learning framework, but it is a deep learning framework.
The Tensor class is a wrapper around a numpy array, except it does Tensor things.
### Example
@@ -33,3 +35,9 @@ print(x.grad) # dz/dx
print(y.grad) # dz/dy
```
### TODO (to make real neural network library)
* Implement convolutions
* Implement Adam optimizer

View File

@@ -27,8 +27,15 @@ def layer_init(m, h):
ret = np.random.uniform(-1., 1., size=(m,h))/np.sqrt(m*h)
return ret.astype(np.float32)
l1 = Tensor(layer_init(784, 128))
l2 = Tensor(layer_init(128, 10))
class TinyBobNet:
def __init__(self):
self.l1 = Tensor(layer_init(784, 128))
self.l2 = Tensor(layer_init(128, 10))
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
model = TinyBobNet()
lr = 0.01
BS = 128
@@ -42,40 +49,33 @@ for i in (t := trange(1000)):
y[range(y.shape[0]),Y] = -1.0
y = Tensor(y)
x = x.dot(l1)
x = x.relu()
x = x_l2 = x.dot(l2)
x = x.logsoftmax()
x = x.mul(y)
x = x.mean()
x.backward()
# network
outs = model.forward(x)
# NLL loss function
loss = outs.mul(y).mean()
loss.backward()
loss = x.data
cat = np.argmax(x_l2.data, axis=1)
cat = np.argmax(outs.data, axis=1)
accuracy = (cat == Y).mean()
# SGD
l1.data = l1.data - lr*l1.grad
l2.data = l2.data - lr*l2.grad
model.l1.data = model.l1.data - lr*model.l1.grad
model.l2.data = model.l2.data - lr*model.l2.grad
# printing
loss = loss.data
losses.append(loss)
accuracies.append(accuracy)
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
# numpy forward pass
def forward(x):
x = x.dot(l1.data)
x = np.maximum(x, 0)
x = x.dot(l2.data)
return x
# evaluate
def numpy_eval():
Y_test_preds_out = forward(X_test.reshape((-1, 28*28)))
Y_test_preds = np.argmax(Y_test_preds_out, axis=1)
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28))))
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
return (Y_test == Y_test_preds).mean()
accuracy = numpy_eval()
print("test set accuracy is %f" % accuracy)
assert accuracy > 0.95