anyone else let down by the fast conv?

This commit is contained in:
George Hotz
2020-10-23 09:09:29 -07:00
parent bcb60e0b7c
commit 5756115e57
3 changed files with 63 additions and 12 deletions

View File

@@ -22,7 +22,7 @@ class TinyBobNet:
# create a model with a conv layer
class TinyConvNet:
def __init__(self):
conv = 7
conv = 5
chans = 16
self.c1 = Tensor(layer_init_uniform(chans,1,conv,conv))
self.l1 = Tensor(layer_init_uniform(((28-conv+1)**2)*chans, 128))

View File

@@ -1,7 +1,7 @@
import numpy as np
import torch
import unittest
from tinygrad.tensor import Tensor, Conv2D
from tinygrad.tensor import Tensor
from tinygrad.gradcheck import numerical_jacobian, jacobian, gradcheck
x_init = np.random.randn(1,3).astype(np.float32)
@@ -71,7 +71,7 @@ class TestTinygrad(unittest.TestCase):
wt = Tensor(w.detach().numpy())
out = torch.nn.functional.conv2d(x,w)
ret = Conv2D.apply(Conv2D, xt, wt)
ret = Tensor.conv2d(xt, wt)
np.testing.assert_allclose(ret.data, out.detach().numpy(), atol=1e-5)
out.mean().backward()