Add WHERE ternary (or trinary?) op (#1196)

* Rename FusedOps to TernaryOps

* Support ternary broadcast

* Add where llop and mlop

* Make where op work in cstyle codegen

* Don't skip test_inf_where

* Add backward path to where op

* Use bool in cstyle codegen

* Add LLVM where op

* Add numpy where op

* Add torch where op

* Simplify where mlop

* Update documentation

* Forgot a rename

* Merged relevant changes from PR #1195 onto PR #1196

* Add test to cover changes to linearizer.ast_parse for WHERE op

Without this METAL will try to use ternary op on float4 and fail

* Make where op work in wgsl backend

* Allow ternary ops to be merged

* Make mypy happy

---------

Co-authored-by: Francis Lam <flam@alum.mit.edu>
This commit is contained in:
Adrian Kretz
2023-07-16 09:31:55 +02:00
committed by GitHub
parent 91f797cd52
commit 5a8ad57163
16 changed files with 86 additions and 44 deletions

View File

@@ -170,10 +170,6 @@ class Tensor:
@staticmethod
def eye(dim, **kwargs): return Tensor([1], **kwargs).slice(((0,dim+1),)).reshape(1, dim+1).expand(dim, dim+1).reshape(dim*(dim+1)).slice(((0,dim*dim),)).reshape(dim, dim)
def where(self:Tensor, input_:Union[Tensor, float], other:Union[Tensor, float]):
cond = (self != 0.0)
return cond * input_ + (1.0 - cond) * other
# ***** rng hlops *****
@staticmethod
@@ -582,6 +578,31 @@ class Tensor:
def minimum(self, x:Union[Tensor, float]) -> Tensor: return -((-self).maximum(-x))
def eq(self, x) -> Tensor: return self._broadcasted(mlops.Equal, x, False)
# ***** broadcasted trinary mlops *****
def where(self:Tensor, input_:Union[Tensor, float], other:Union[Tensor, float]):
# TODO: ensure self is non-differentiable, could mess with ceil/float though
dtype = self.dtype if self.dtype != dtypes.bool and self.dtype.__class__ is not ImageDType else dtypes.float32
x: Tensor = self
y: Tensor = Tensor(cast(float, input_), device=self.device, requires_grad=False, dtype=dtype) if input_.__class__ is not Tensor else cast(Tensor, input_)
z: Tensor = Tensor(cast(float, other), device=self.device, requires_grad=False, dtype=dtype) if other.__class__ is not Tensor else cast(Tensor, other)
if x.shape == y.shape and y.shape == z.shape: return mlops.Where.apply(x, y, z)
# TODO refactor this code along with the binary version above
len_x_shape, len_y_shape, len_z_shape = len(x.shape), len(y.shape), len(z.shape)
max_shape = max(len_x_shape, len_y_shape, len_z_shape)
if len_x_shape != max_shape: x = x.reshape((1,) * (max_shape - len_x_shape) + x.shape)
if len_y_shape != max_shape: y = y.reshape((1,) * (max_shape - len_y_shape) + y.shape)
if len_z_shape != max_shape: z = z.reshape((1,) * (max_shape - len_z_shape) + z.shape)
shape_ret = tuple([max(x, y, z) for x, y, z in zip(x.shape, y.shape, z.shape)])
if x.shape != shape_ret: x = x.expand(shape_ret)
if y.shape != shape_ret: y = y.expand(shape_ret)
if z.shape != shape_ret: z = z.expand(shape_ret)
return mlops.Where.apply(x, y, z)
# ***** binary op wrappers (18 wasted lines to make the typechecker happy) *****
# NOTE: __pow__ and friends are broken in mypyc with the ** operator