diff --git a/test/mnist.py b/test/mnist.py index 686b6fcfc9..e950368b8f 100644 --- a/test/mnist.py +++ b/test/mnist.py @@ -1,8 +1,8 @@ #!/usr/bin/env python import numpy as np from tinygrad.tensor import Tensor -from tinygrad.nn import layer_init, SGD from tinygrad.utils import fetch_mnist +import tinygrad.optim as optim from tqdm import trange @@ -12,6 +12,10 @@ X_train, Y_train, X_test, Y_test = fetch_mnist() # train a model +def layer_init(m, h): + ret = np.random.uniform(-1., 1., size=(m,h))/np.sqrt(m*h) + return ret.astype(np.float32) + class TinyBobNet: def __init__(self): self.l1 = Tensor(layer_init(784, 128)) @@ -22,9 +26,8 @@ class TinyBobNet: # optimizer - model = TinyBobNet() -optim = SGD([model.l1, model.l2], lr=0.01) +optim = optim.SGD([model.l1, model.l2], lr=0.01) BS = 128 losses, accuracies = [], [] diff --git a/tinygrad/__init__.py b/tinygrad/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/tinygrad/nn.py b/tinygrad/optim.py similarity index 55% rename from tinygrad/nn.py rename to tinygrad/optim.py index e3f6e95f62..e8adbb5776 100644 --- a/tinygrad/nn.py +++ b/tinygrad/optim.py @@ -1,9 +1,3 @@ -import numpy as np - -def layer_init(m, h): - ret = np.random.uniform(-1., 1., size=(m,h))/np.sqrt(m*h) - return ret.astype(np.float32) - class SGD: def __init__(self, tensors, lr): self.tensors = tensors