diff --git a/tinygrad/llops/ops_torch.py b/tinygrad/llops/ops_torch.py index 9aabe4e4b5..56c15eb5f3 100644 --- a/tinygrad/llops/ops_torch.py +++ b/tinygrad/llops/ops_torch.py @@ -30,14 +30,17 @@ def conv(x,w,ret,stride,groups): def convdw(input,grad_output,dw,stride,groups): # NOTE: torch.nn.grad.conv2d_weight is wrong for groups in pytorch, wonder who it affects + # https://github.com/pytorch/pytorch/issues/51430 C = get_conv_args(input.shape, dw.shape, stride, groups) grad_output = grad_output.reshape(C.bs, C.groups, C.rcout, C.oy, C.ox).repeat(1, 1, C.cin, 1, 1) grad_output = grad_output.reshape(C.bs * C.groups * C.rcout * C.cin, 1, C.oy, C.ox) input = input.reshape(1, C.bs * C.groups * C.cin, C.iy, C.ix) grad_weight = torch.nn.functional.conv2d(input, grad_output, dilation=stride, groups=C.bs*C.groups*C.cin) - grad_weight = grad_weight.reshape(C.bs,-1).sum(dim=0) - grad_weight = grad_weight.view(C.groups, C.cin, C.rcout, C.H, C.W).transpose(2, 1) - dw[:] = grad_weight.contiguous().view(C.groups*C.rcout, C.cin, C.H, C.W) + grad_weight = grad_weight.reshape(C.bs, grad_weight.shape[1] // C.bs, *grad_weight.shape[2:]).sum(dim=0) + grad_weight = grad_weight.view(C.groups, C.cin, C.rcout, *grad_weight.shape[1:]).transpose(2, 1) + # narrow removes excess for strided + dw[:] = grad_weight.contiguous().view(C.groups*C.rcout, C.cin, *grad_weight.shape[3:]).narrow( + 2, 0, dw.shape[2]).narrow(3, 0, dw.shape[3]) return dw def convdx(w,grad_output,dx,stride,groups):