mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-09 15:08:02 -05:00
delete files that import ShapeTracker (#13805)
This commit is contained in:
@@ -1,114 +0,0 @@
|
||||
import os, sys, sqlite3, pickle, random
|
||||
from tqdm import tqdm, trange
|
||||
from copy import deepcopy
|
||||
from tinygrad.nn import Linear
|
||||
from tinygrad.tensor import Tensor
|
||||
from tinygrad.nn.optim import Adam
|
||||
from tinygrad.nn.state import get_parameters, get_state_dict, safe_save, safe_load, load_state_dict
|
||||
from tinygrad.codegen.opt.search import actions
|
||||
from extra.optimization.helpers import load_worlds, ast_str_to_lin, lin_to_feats, assert_same_lin
|
||||
from tinygrad.codegen.opt.kernel import Kernel
|
||||
from tinygrad.helpers import getenv
|
||||
|
||||
# stuff needed to unpack a kernel
|
||||
from tinygrad.uop.ops import LazyOp, TernaryOps, BinaryOps, UnaryOps, ReduceOps, BufferOps, MemBuffer, ConstBuffer
|
||||
from tinygrad.dtype import dtypes
|
||||
from tinygrad.shape.shapetracker import ShapeTracker
|
||||
from tinygrad.shape.view import View
|
||||
from tinygrad.uop.ops import Variable
|
||||
inf, nan = float('inf'), float('nan')
|
||||
from tinygrad.codegen.opt.kernel import Opt, OptOps
|
||||
|
||||
INNER = 256
|
||||
class PolicyNet:
|
||||
def __init__(self):
|
||||
self.l1 = Linear(1021,INNER)
|
||||
self.l2 = Linear(INNER,INNER)
|
||||
self.l3 = Linear(INNER,1+len(actions))
|
||||
def __call__(self, x):
|
||||
x = self.l1(x).relu()
|
||||
x = self.l2(x).relu().dropout(0.9)
|
||||
return self.l3(x).log_softmax()
|
||||
|
||||
def dataset_from_cache(fn):
|
||||
conn = sqlite3.connect(fn)
|
||||
cur = conn.cursor()
|
||||
cur.execute("SELECT * FROM beam_search")
|
||||
X,A = [], []
|
||||
for f in tqdm(cur.fetchall()):
|
||||
Xs,As = [], []
|
||||
try:
|
||||
lin = Kernel(eval(f[0]))
|
||||
opts = pickle.loads(f[-1])
|
||||
for o in opts:
|
||||
Xs.append(lin_to_feats(lin, use_sts=True))
|
||||
As.append(actions.index(o))
|
||||
lin.apply_opt(o)
|
||||
Xs.append(lin_to_feats(lin, use_sts=True))
|
||||
As.append(0)
|
||||
except Exception:
|
||||
pass
|
||||
X += Xs
|
||||
A += As
|
||||
return X,A
|
||||
|
||||
if __name__ == "__main__":
|
||||
if getenv("REGEN"):
|
||||
X,V = dataset_from_cache(sys.argv[1] if len(sys.argv) > 1 else "/tmp/tinygrad_cache")
|
||||
safe_save({"X": Tensor(X), "V": Tensor(V)}, "/tmp/dataset_policy")
|
||||
else:
|
||||
ld = safe_load("/tmp/dataset_policy")
|
||||
X,V = ld['X'].numpy(), ld['V'].numpy()
|
||||
|
||||
print(X.shape, V.shape)
|
||||
order = list(range(X.shape[0]))
|
||||
random.shuffle(order)
|
||||
X, V = X[order], V[order]
|
||||
|
||||
ratio = -256
|
||||
X_test, V_test = Tensor(X[ratio:]), Tensor(V[ratio:])
|
||||
X,V = X[:ratio], V[:ratio]
|
||||
print(X.shape, V.shape)
|
||||
|
||||
net = PolicyNet()
|
||||
#if os.path.isfile("/tmp/policynet.safetensors"): load_state_dict(net, safe_load("/tmp/policynet.safetensors"))
|
||||
optim = Adam(get_parameters(net))
|
||||
|
||||
def get_minibatch(X,Y,bs):
|
||||
xs, ys = [], []
|
||||
for _ in range(bs):
|
||||
sel = random.randint(0, len(X)-1)
|
||||
xs.append(X[sel])
|
||||
ys.append(Y[sel])
|
||||
return Tensor(xs), Tensor(ys)
|
||||
|
||||
Tensor.training = True
|
||||
losses = []
|
||||
test_losses = []
|
||||
test_accuracy = 0
|
||||
test_loss = float('inf')
|
||||
for i in (t:=trange(500)):
|
||||
x,y = get_minibatch(X,V,bs=256)
|
||||
out = net(x)
|
||||
loss = out.sparse_categorical_crossentropy(y)
|
||||
optim.zero_grad()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
cat = out.argmax(axis=-1)
|
||||
accuracy = (cat == y).mean()
|
||||
t.set_description(f"loss {loss.numpy():7.2f} accuracy {accuracy.numpy()*100:7.2f}%, test loss {test_loss:7.2f} test accuracy {test_accuracy*100:7.2f}%")
|
||||
|
||||
losses.append(loss.numpy().item())
|
||||
test_losses.append(test_loss)
|
||||
if i % 10:
|
||||
out = net(X_test)
|
||||
test_loss = out.sparse_categorical_crossentropy(V_test).square().mean().numpy().item()
|
||||
cat = out.argmax(axis=-1)
|
||||
test_accuracy = (cat == y).mean().numpy()
|
||||
|
||||
safe_save(get_state_dict(net), "/tmp/policynet.safetensors")
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
plt.plot(losses[10:])
|
||||
plt.plot(test_losses[10:])
|
||||
plt.show()
|
||||
@@ -1,129 +0,0 @@
|
||||
import sys, sqlite3, pickle, math
|
||||
from collections import defaultdict
|
||||
from tqdm import tqdm, trange
|
||||
import numpy as np
|
||||
|
||||
# stuff needed to unpack a kernel
|
||||
from tinygrad.uop.ops import LazyOp, TernaryOps, BinaryOps, UnaryOps, ReduceOps, BufferOps, MemBuffer, ConstBuffer
|
||||
from tinygrad.dtype import dtypes
|
||||
from tinygrad.shape.shapetracker import ShapeTracker
|
||||
from tinygrad.shape.view import View
|
||||
from tinygrad.uop.ops import Variable
|
||||
inf, nan = float('inf'), float('nan')
|
||||
from tinygrad.codegen.opt.kernel import Opt, OptOps
|
||||
|
||||
# more stuff
|
||||
from tinygrad.codegen.opt.kernel import Kernel
|
||||
from tinygrad.codegen.opt.search import actions
|
||||
from extra.optimization.helpers import lin_to_feats
|
||||
from extra.optimization.pretrain_valuenet import ValueNet
|
||||
from tinygrad.nn.optim import Adam
|
||||
from tinygrad.nn.state import get_parameters, get_state_dict, safe_save, safe_load, load_state_dict
|
||||
import random
|
||||
from tinygrad.tensor import Tensor
|
||||
from tinygrad.helpers import getenv
|
||||
|
||||
def dataset_from_cache(fn):
|
||||
conn = sqlite3.connect(fn)
|
||||
cur = conn.cursor()
|
||||
cur.execute("SELECT * FROM time_linearizer")
|
||||
grouped = defaultdict(dict)
|
||||
for f in tqdm(cur.fetchall()): grouped[f[0]][f[1:-1]] = pickle.loads(f[-1])
|
||||
|
||||
opts_to_outcome = {}
|
||||
|
||||
for ast,sk in grouped.items():
|
||||
cnts = defaultdict(int)
|
||||
for sks,tm in sk.items():
|
||||
if sks[1] != 1: continue
|
||||
opts = eval(sks[0])
|
||||
cnts[(len(opts), sks[1])] += 1
|
||||
opts_to_outcome[(ast, tuple(opts))] = tm
|
||||
#print(cnts)
|
||||
|
||||
S,A,V = [], [], []
|
||||
for ast,k in tqdm(opts_to_outcome):
|
||||
if len(k) == 0: continue
|
||||
old_tm = min(opts_to_outcome[(ast,k[:-1])])
|
||||
new_tm = min(opts_to_outcome[(ast,k)])
|
||||
if math.isinf(old_tm) or math.isinf(new_tm) or old_tm < 1e-9 or new_tm < 1e-9: continue
|
||||
try:
|
||||
lin = Kernel(eval(ast))
|
||||
except Exception:
|
||||
continue
|
||||
lin.apply_opts(k[:-1])
|
||||
act = k[-1]
|
||||
log_ratio = math.log(old_tm/new_tm)
|
||||
#print(f"ratio: {old_tm/new_tm:6.2f}x (log {log_ratio:5.2f}) from {str(act):50s} on {lin.colored_shape()}")
|
||||
S.append(lin_to_feats(lin, use_sts=True))
|
||||
A.append(actions.index(act))
|
||||
V.append([log_ratio]) # NOTE: i have written the bug many times with this having the wrong dim
|
||||
|
||||
S, A, V = np.array(S), np.array(A), np.array(V, dtype=np.float32)
|
||||
X = np.zeros((S.shape[0], S.shape[1]+len(actions)), dtype=np.float32)
|
||||
X[:, :S.shape[1]] = S
|
||||
X[range(S.shape[0]), S.shape[1]+A] = 1.0
|
||||
return X, V
|
||||
|
||||
def log_likelihood(x:Tensor, mu:Tensor, log_sigma:Tensor):
|
||||
#print(x.shape, mu.shape, log_sigma.shape)
|
||||
#return (x-mu).abs() * (-log_sigma).exp() + log_sigma
|
||||
return (x-mu).square() * (-2*log_sigma).exp() / 2 + log_sigma
|
||||
|
||||
if __name__ == "__main__":
|
||||
if getenv("REGEN"):
|
||||
X,V = dataset_from_cache(sys.argv[1] if len(sys.argv) > 1 else "/tmp/tinygrad_cache")
|
||||
safe_save({"X": Tensor(X), "V": Tensor(V)}, "/tmp/dataset")
|
||||
else:
|
||||
ld = safe_load("/tmp/dataset")
|
||||
X,V = ld['X'].numpy(), ld['V'].numpy()
|
||||
|
||||
print(X.shape, V.shape)
|
||||
order = list(range(X.shape[0]))
|
||||
random.shuffle(order)
|
||||
X, V = X[order], V[order]
|
||||
|
||||
ratio = -512
|
||||
X_test, V_test = Tensor(X[ratio:]), Tensor(V[ratio:])
|
||||
X,V = X[:ratio], V[:ratio]
|
||||
print(X.shape, V.shape)
|
||||
|
||||
#print(X[0], V[0])
|
||||
#print(X[-1], V[-1])
|
||||
print(X.shape)
|
||||
|
||||
net = ValueNet(X.shape[1], 2)
|
||||
optim = Adam(get_parameters(net))
|
||||
|
||||
def get_minibatch(X,Y,bs):
|
||||
xs, ys = [], []
|
||||
#random.seed(1337)
|
||||
for _ in range(bs):
|
||||
sel = random.randint(0, len(X)-1)
|
||||
xs.append(X[sel])
|
||||
ys.append(Y[sel])
|
||||
return Tensor(xs), Tensor(ys)
|
||||
|
||||
Tensor.training = True
|
||||
losses = []
|
||||
test_losses = []
|
||||
test_loss = float('inf')
|
||||
for i in (t:=trange(2000)):
|
||||
x,y = get_minibatch(X,V,bs=256)
|
||||
out = net(x)
|
||||
#loss = (out-y).square().mean()
|
||||
loss = log_likelihood(y, out[:, 0:1], out[:, 1:2]).mean()
|
||||
optim.zero_grad()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
t.set_description(f"loss {loss.numpy():7.2f}, test loss {test_loss:7.2f}")
|
||||
losses.append(loss.numpy().item())
|
||||
test_losses.append(test_loss)
|
||||
if i % 10: test_loss = (net(X_test)[:, 0:1]-V_test).square().mean().numpy().item()
|
||||
|
||||
safe_save(get_state_dict(net), "/tmp/qnet.safetensors")
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
plt.plot(losses[20:])
|
||||
plt.plot(test_losses[20:])
|
||||
plt.show()
|
||||
@@ -1,124 +0,0 @@
|
||||
# stuff needed to unpack a kernel
|
||||
from tinygrad import Variable
|
||||
from tinygrad.codegen.opt import Opt, OptOps
|
||||
from tinygrad.uop.ops import UOp, Ops, KernelInfo
|
||||
from tinygrad.dtype import dtypes, PtrDType
|
||||
from tinygrad.shape.shapetracker import ShapeTracker
|
||||
from tinygrad.shape.view import View
|
||||
from tinygrad.helpers import getenv
|
||||
from tinygrad.engine.realize import get_program
|
||||
inf, nan = float('inf'), float('nan')
|
||||
UOps = Ops
|
||||
|
||||
# kernel unpacker
|
||||
from tinygrad.codegen.opt.kernel import Kernel
|
||||
def ast_str_to_ast(ast_str:str) -> UOp: return eval(ast_str)
|
||||
def ast_str_to_lin(ast_str:str, opts=None): return Kernel(ast_str_to_ast(ast_str), opts=opts)
|
||||
def kern_str_to_lin(kern_str:str, opts=None):
|
||||
(ast, applied_opts,) = eval(kern_str)
|
||||
k = Kernel(ast, opts=opts)
|
||||
k.apply_opts(applied_opts)
|
||||
return k
|
||||
|
||||
# load worlds, a dataset of about 12k kernels
|
||||
import gzip
|
||||
from pathlib import Path
|
||||
import random
|
||||
from tinygrad.helpers import dedup, DEBUG
|
||||
def load_worlds(filter_reduce=True, filter_noimage=True, filter_novariable=True):
|
||||
fn = Path(__file__).parent.parent / "datasets/sops.gz"
|
||||
ast_strs = dedup(gzip.open(fn).read().decode('utf-8').strip().split("\n"))
|
||||
assert len(ast_strs) >= getenv("MIN_ASTS", 1000), f"dataset size = {len(ast_strs)} is too small"
|
||||
if DEBUG >= 1: print(f"loaded {len(ast_strs)=} before filters")
|
||||
if filter_reduce: ast_strs = [x for x in ast_strs if "REDUCE_AXIS" in x]
|
||||
if filter_noimage: ast_strs = [x for x in ast_strs if "dtypes.image" not in x]
|
||||
if filter_novariable: ast_strs = [x for x in ast_strs if "DEFINE_VAR" not in x]
|
||||
if DEBUG >= 1: print(f"loaded {len(ast_strs)=} after filters {filter_reduce=}, {filter_noimage=}, {filter_novariable=}")
|
||||
random.seed(1337)
|
||||
random.shuffle(ast_strs)
|
||||
return ast_strs
|
||||
|
||||
def assert_same_lin(l1, l2):
|
||||
assert l1.colored_shape() == l2.colored_shape()
|
||||
assert all(x==y for x,y in zip(l1.sts, l2.sts))
|
||||
|
||||
# get features
|
||||
import math
|
||||
|
||||
MAX_DIMS = 16
|
||||
MAX_BUFS = 9
|
||||
def lin_to_feats(lin:Kernel, use_sts=True):
|
||||
assert lin.shape_len < MAX_DIMS, "too many dims"
|
||||
|
||||
all_colors = ["blue", "cyan", "white", "green", "red", "magenta", "yellow"]
|
||||
lc = [all_colors.index(x) for x in lin.colors()]
|
||||
|
||||
ret = []
|
||||
# before, some generic linearizer stuff
|
||||
ret.append(lin.upcasted)
|
||||
ret.append(lin.local_dims)
|
||||
|
||||
# first, the full shape, including the colors
|
||||
for s,os,c in zip(lin.full_shape,lin.output_shape,lc):
|
||||
if isinstance(s, UOp):
|
||||
ret.append(False)
|
||||
ret += [0]*9
|
||||
else:
|
||||
ret.append(True)
|
||||
ret.append(math.log2(s))
|
||||
ret.append(min(33, s))
|
||||
ret.append(math.log2(os))
|
||||
ret.append(min(33, os))
|
||||
ret.append(s%2 == 0)
|
||||
ret.append(s%3 == 0)
|
||||
ret.append(s%4 == 0)
|
||||
ret.append(s%8 == 0)
|
||||
ret.append(s%16 == 0)
|
||||
cc = [0]*7
|
||||
cc[c] = 1
|
||||
ret += cc
|
||||
ret += [0] * (17*(MAX_DIMS-len(lin.full_shape)))
|
||||
ret = [float(x) for x in ret]
|
||||
|
||||
if use_sts:
|
||||
my_sts = dedup([(x.shape == lin.full_shape, x.is_expanded(), any(v.mask is not None for v in x.views), len(x.views)) for x in lin.sts])
|
||||
assert len(my_sts) < MAX_BUFS
|
||||
sts_len = 3 + 5*MAX_DIMS
|
||||
for s in my_sts:
|
||||
ret.append(s[0]) # reduce
|
||||
ret.append(s[2]) # has mask
|
||||
ret.append(s[3]) # len views
|
||||
for d in s[1]:
|
||||
ret.append(d is None)
|
||||
ret.append(d == 0)
|
||||
ret.append(d == 1)
|
||||
ret.append(min(33, d) if d is not None else -1)
|
||||
if d is not None and d >= 1: ret.append(math.log2(d))
|
||||
else: ret.append(-1)
|
||||
ret += [0] * (5*(MAX_DIMS - len(s[1])))
|
||||
ret += [0] * (sts_len*(MAX_BUFS - len(my_sts)))
|
||||
assert len(ret) == 1021, f"wrong len {len(ret)}"
|
||||
else:
|
||||
assert len(ret) == 274, f"wrong len {len(ret)}"
|
||||
return ret
|
||||
|
||||
from tinygrad.device import Device, Buffer
|
||||
from tinygrad.codegen.opt.search import _ensure_buffer_alloc, _time_program
|
||||
from tinygrad.helpers import to_function_name, CACHELEVEL, diskcache_get, diskcache_put
|
||||
|
||||
def time_linearizer(lin:Kernel, rawbufs:list[Buffer], allow_test_size=True, max_global_size=65536, cnt=3, disable_cache=False, clear_l2=False) -> float: # noqa: E501
|
||||
key = {"ast": lin.ast.key, "opts": str(lin.applied_opts), "allow_test_size": allow_test_size,
|
||||
"max_global_size": max_global_size, "clear_l2": clear_l2, "device": lin.opts.device, "suffix": lin.opts.suffix}
|
||||
if not disable_cache and CACHELEVEL >= 2 and (val:=diskcache_get("time_linearizer", key)) is not None: return min(val)
|
||||
|
||||
dev = Device[lin.opts.device]
|
||||
assert dev.compiler is not None
|
||||
|
||||
rawbufs = _ensure_buffer_alloc(rawbufs)
|
||||
var_vals: dict[str, int] = {k.expr:int(k.vmax+k.vmin)//2 for k in lin.ast.variables()}
|
||||
p = get_program(lin.get_optimized_ast(), lin.opts)
|
||||
tms = _time_program(p, dev.compiler.compile(p.src), var_vals, rawbufs,
|
||||
max_global_size=max_global_size if allow_test_size else None, clear_l2=clear_l2, cnt=cnt, name=to_function_name(lin.name))
|
||||
|
||||
if CACHELEVEL >= 2: diskcache_put("time_linearizer", key, tms)
|
||||
return min(tms)
|
||||
@@ -1,88 +0,0 @@
|
||||
from tinygrad.codegen.opt.kernel import Kernel
|
||||
from tqdm import tqdm, trange
|
||||
import math
|
||||
import random
|
||||
from tinygrad.tensor import Tensor
|
||||
from tinygrad.nn import Linear
|
||||
from tinygrad.nn.optim import Adam
|
||||
from tinygrad.nn.state import get_parameters, get_state_dict, safe_save, safe_load, load_state_dict
|
||||
|
||||
# stuff needed to unpack a kernel
|
||||
from tinygrad.uop.ops import LazyOp, TernaryOps, BinaryOps, UnaryOps, ReduceOps, BufferOps, MemBuffer, ConstBuffer
|
||||
from tinygrad.dtype import dtypes
|
||||
from tinygrad.shape.shapetracker import ShapeTracker
|
||||
from tinygrad.shape.view import View
|
||||
from tinygrad.uop.ops import Variable
|
||||
inf, nan = float('inf'), float('nan')
|
||||
from tinygrad.codegen.opt.kernel import Opt, OptOps
|
||||
|
||||
from extra.optimization.helpers import lin_to_feats, MAX_DIMS
|
||||
|
||||
# NOTE: this is not real value of the state, it's just a prediction of the runtime
|
||||
INNER = 512
|
||||
class ValueNet:
|
||||
def __init__(self, feats=240, out=1):
|
||||
self.l1 = Linear(feats,INNER)
|
||||
self.l2 = Linear(INNER,INNER)
|
||||
self.l3 = Linear(INNER,INNER)
|
||||
self.l4 = Linear(INNER,out)
|
||||
def __call__(self, x):
|
||||
x = self.l1(x).relu()
|
||||
x = self.l2(x).relu()
|
||||
x = self.l3(x).relu().dropout(0.8)
|
||||
return self.l4(x)
|
||||
|
||||
if __name__ == "__main__":
|
||||
net = ValueNet()
|
||||
optim = Adam(get_parameters(net))
|
||||
|
||||
TEST_SIZE = 256
|
||||
|
||||
dset = open("/tmp/logtm").read().strip().split("\n")
|
||||
random.seed(1337)
|
||||
random.shuffle(dset)
|
||||
|
||||
X,Y = [], []
|
||||
for i,x in enumerate(tqdm(dset)):
|
||||
ast, opts, tms = eval(x)
|
||||
lin = Kernel(ast)
|
||||
for o in opts: lin.apply_opt(o)
|
||||
if lin.shape_len >= MAX_DIMS: continue
|
||||
if min(tms) == float('inf'): continue
|
||||
X.append(lin_to_feats(lin))
|
||||
Y.append([math.log(min(tms))])
|
||||
print(f"got {len(X)} samples")
|
||||
|
||||
X_test,Y_test = Tensor(X[-TEST_SIZE:]), Tensor(Y[-TEST_SIZE:])
|
||||
X,Y = X[:-TEST_SIZE], Y[:-TEST_SIZE]
|
||||
|
||||
def get_minibatch(X,Y,bs):
|
||||
xs, ys = [], []
|
||||
for _ in range(bs):
|
||||
sel = random.randint(0, len(X)-1)
|
||||
xs.append(X[sel])
|
||||
ys.append(Y[sel])
|
||||
return Tensor(xs), Tensor(ys)
|
||||
|
||||
Tensor.training = True
|
||||
losses = []
|
||||
test_losses = []
|
||||
test_loss = float('inf')
|
||||
for i in (t:=trange(2000)):
|
||||
x,y = get_minibatch(X,Y,bs=256)
|
||||
out = net(x)
|
||||
loss = (out-y).square().mean()
|
||||
optim.zero_grad()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
t.set_description(f"loss {loss.numpy():7.2f}, test loss {test_loss:7.2f}")
|
||||
losses.append(loss.numpy().item())
|
||||
test_losses.append(test_loss)
|
||||
if i % 10: test_loss = (net(X_test)-Y_test).square().mean().numpy().item()
|
||||
|
||||
safe_save(get_state_dict(net), "/tmp/valuenet.safetensors")
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
plt.plot(losses[200:])
|
||||
plt.plot(test_losses[200:])
|
||||
plt.show()
|
||||
@@ -1,20 +0,0 @@
|
||||
from extra.optimization.helpers import load_worlds, ast_str_to_ast
|
||||
from tinygrad.helpers import tqdm
|
||||
from tinygrad.uop.ops import pyrender, UOp, Ops
|
||||
from tinygrad import dtypes
|
||||
from tinygrad.shape.shapetracker import ShapeTracker, View
|
||||
inf, nan = float('inf'), float('nan')
|
||||
|
||||
if __name__ == "__main__":
|
||||
ast_strs = load_worlds()
|
||||
for i, ast_str in enumerate(tqdm(ast_strs)):
|
||||
good_ast = ast_str_to_ast(ast_str)
|
||||
code = '\n'.join(pyrender(good_ast))
|
||||
print("\n***************\n\n"+code)
|
||||
exec(code)
|
||||
if str(good_ast) != str(ast):
|
||||
print(code)
|
||||
print("MISMATCH")
|
||||
print(good_ast)
|
||||
print(ast)
|
||||
break
|
||||
Reference in New Issue
Block a user