use torch 2.9 and its Muon in test (#12773)

* use torch 2.9 and its Muon in test

* relax and disable
This commit is contained in:
chenyu
2025-10-21 13:35:17 -04:00
committed by GitHub
parent f51f9aaa16
commit 8baa61bd67
4 changed files with 26 additions and 96 deletions

View File

@@ -1,75 +0,0 @@
import torch
#credit to KellerJordan at https://github.com/KellerJordan/Muon/tree/master
#some changes: classic momentum instead of weighting gradient
#added ns_steps, ns_coefficients, nesterov as hyperparams
def zeropower_via_newtonschulz5(G:torch.tensor, steps:int, params:tuple[int, ...]):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert G.ndim >= 2 # batched Muon implementation by @scottjmaddox, and put into practice in the record by @YouJiacheng
a, b, c = params
X = G
if G.size(-2) > G.size(-1):
X = X.mT
# Ensure spectral norm is at most 1
X = X / (X.norm(dim=(-2, -1), keepdim=True) + 1e-7)
# Perform the NS iterations
for _ in range(steps):
A = X @ X.mT
B = b * A + c * A @ A # quintic computation strategy adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(-2) > G.size(-1):
X = X.mT
return X
def muon_update(grad, momentum, beta=0.95, ns_steps=5, ns_coefficients=(3.4445, -4.7750, 2.0315), nesterov=True):
if beta:
momentum.mul_(beta).add_(grad)
update = grad.add(momentum,alpha=beta) if nesterov else momentum
else: update = grad
if update.ndim == 4: # for the case of conv filters
update = update.view(len(update), -1)
update = zeropower_via_newtonschulz5(update, steps=ns_steps, params=ns_coefficients)
return update
class SingleDeviceMuon(torch.optim.Optimizer):
"""
Muon variant for usage in non-distributed settings.
"""
def __init__(self, params, lr=0.02, weight_decay=0.0, momentum=0.95, ns_steps=5, ns_coefficients=(3.4445, -4.7750, 2.0315), nesterov=True):
defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum, ns_steps=ns_steps, ns_coefficients=ns_coefficients, nesterov=nesterov)
super().__init__(params, defaults)
@torch.no_grad()
def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
p.grad = torch.zeros_like(p) # Force synchronization
state = self.state[p]
if len(state) == 0:
state["momentum_buffer"] = torch.zeros_like(p)
update = muon_update(p.grad, state["momentum_buffer"], beta=group["momentum"], ns_steps=group["ns_steps"],
ns_coefficients=group["ns_coefficients"], nesterov=group["nesterov"])
p.mul_(1.0 - group["lr"] * group["weight_decay"])
p.add_(update.reshape(p.shape), alpha=-group["lr"])
return loss