Tensor.uniform set default to standard uniform (#2158)

* Tensor.uniform set default to standard uniform

* clean up test to reuse function
This commit is contained in:
chenyu
2023-10-27 16:15:30 -04:00
committed by GitHub
parent 36ab04ae35
commit 9215bccb41
2 changed files with 14 additions and 24 deletions

View File

@@ -6,6 +6,7 @@ from tinygrad.tensor import Tensor
import tinygrad.nn as nn
import pytest
from tinygrad.helpers import dtypes
from functools import partial
pytestmark = pytest.mark.webgpu
@@ -43,28 +44,17 @@ def kstest(l1, l2):
prob = ksprob((nesq + 0.12 + 0.11 / nesq) * d)
return prob
def normal_test(func, shape=(20, 23), alpha=0.05):
Tensor.manual_seed(1337)
np.random.seed(1337)
x = func(*shape).numpy().flatten()
y = np.random.randn(*shape).flatten()
return kstest(x, y) >= alpha
def equal_distrib_ints(tiny_func, numpy_func, shape=(20, 23), low=-100, high=100, dtype=dtypes.int32, alpha=0.05):
Tensor.manual_seed(1337)
np.random.seed(1337)
x = tiny_func(*shape, low=low, high=high, dtype=dtype).cpu().numpy().flatten()
y = numpy_func(shape).flatten()
return kstest(x, y) >= alpha
def equal_distribution(tiny_func, torch_func, numpy_func=None, shape=(20, 23), alpha=0.05):
def equal_distribution(tiny_func, torch_func=None, numpy_func=None, shape=(20, 23), alpha=0.05):
Tensor.manual_seed(1337)
torch.manual_seed(1337)
np.random.seed(1337)
assert not (torch_func is None and numpy_func is None), "no function to compare with"
x = tiny_func(*shape).numpy().flatten()
if numpy_func is not None: y = numpy_func(shape).flatten()
z = torch_func(shape).numpy().flatten()
return (numpy_func is None or kstest(x, y) >= alpha) and kstest(x, z) >= alpha
if torch_func is not None: z = torch_func(shape).numpy().flatten()
return (numpy_func is None or kstest(x, y) >= alpha) and (torch_func is None or kstest(x, z) >= alpha)
def normal_test(func, shape=(20, 23), alpha=0.05): return equal_distribution(func, numpy_func=lambda x: np.random.randn(*x), shape=shape, alpha=alpha)
class TestRandomness(unittest.TestCase):
def test_rand(self):
@@ -81,16 +71,16 @@ class TestRandomness(unittest.TestCase):
def test_uniform(self):
self.assertFalse(normal_test(Tensor.uniform))
self.assertTrue(equal_distribution(Tensor.uniform, lambda x: torch.nn.init.uniform_(torch.empty(x), a=-1, b=1), lambda x: np.random.uniform(low=-1, high=1, size=x)))
self.assertTrue(equal_distrib_ints(Tensor.uniform, lambda x: np.random.randint(low=-100, high=100, size=x)))
self.assertTrue(equal_distribution(Tensor.uniform, lambda x: torch.nn.init.uniform_(torch.empty(x)), lambda x: np.random.uniform(size=x)))
self.assertTrue(equal_distribution(partial(Tensor.uniform, low=-100, high=100, dtype=dtypes.int32), numpy_func=lambda x: np.random.randint(low=-100, high=100, size=x)))
def test_scaled_uniform(self):
self.assertFalse(normal_test(Tensor.scaled_uniform))
self.assertTrue(equal_distribution(Tensor.scaled_uniform, lambda x: torch.nn.init.uniform_(torch.empty(x), a=-1, b=1) / math.sqrt(math.prod(x)), lambda x: (np.random.rand(*x) * 2 - 1) / math.sqrt(math.prod(x))))
self.assertTrue(equal_distribution(Tensor.scaled_uniform, lambda x: torch.nn.init.uniform_(torch.empty(x), a=-1, b=1) / math.sqrt(math.prod(x)), lambda x: np.random.uniform(-1, 1, size=x) / math.sqrt(math.prod(x))))
def test_glorot_uniform(self):
self.assertFalse(normal_test(Tensor.glorot_uniform))
self.assertTrue(equal_distribution(Tensor.glorot_uniform, lambda x: torch.nn.init.xavier_uniform_(torch.empty(x)), lambda x: (np.random.rand(*x) * 2 - 1) * math.sqrt(6 / (x[0] + math.prod(x[1:])))))
self.assertTrue(equal_distribution(Tensor.glorot_uniform, lambda x: torch.nn.init.xavier_uniform_(torch.empty(x)), lambda x: np.random.uniform(-1, 1, size=x) * math.sqrt(6 / (x[0] + math.prod(x[1:])))))
def test_kaiming_uniform(self):
Tensor.manual_seed(1337)