mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-09 15:08:02 -05:00
cifar flags for RANDOM_CROP, RANDOM_FLIP, and CUTMIX (#3204)
experimenting with different setups, also would like to jit the data augmentation next
This commit is contained in:
@@ -205,10 +205,14 @@ def train_cifar():
|
||||
order = list(range(0, X.shape[0]))
|
||||
random.shuffle(order)
|
||||
if is_train:
|
||||
X = random_crop(X, crop_size=32)
|
||||
X = Tensor.where(Tensor.rand(X.shape[0],1,1,1) < 0.5, X[..., ::-1], X) # flip LR
|
||||
# NOTE: to bring cutmix back, make sure it's performing on mini-batch and not the whole set
|
||||
# if step >= hyp['net']['cutmix_steps']: X, Y = cutmix(X, Y, mask_size=hyp['net']['cutmix_size'])
|
||||
# TODO: these are not jitted
|
||||
if getenv("RANDOM_CROP", 1):
|
||||
X = random_crop(X, crop_size=32)
|
||||
if getenv("RANDOM_FLIP", 1):
|
||||
X = Tensor.where(Tensor.rand(X.shape[0],1,1,1) < 0.5, X[..., ::-1], X) # flip LR
|
||||
if getenv("CUTMIX", 1):
|
||||
if step >= hyp['net']['cutmix_steps']:
|
||||
X, Y = cutmix(X, Y, mask_size=hyp['net']['cutmix_size'])
|
||||
X, Y = X.numpy(), Y.numpy()
|
||||
et = time.monotonic()
|
||||
print(f"shuffling {'training' if is_train else 'test'} dataset in {(et-st)*1e3:.2f} ms ({cnt})")
|
||||
|
||||
Reference in New Issue
Block a user