schedule: cache unbinds for consistent cache keys (#13662)

* schedule: cache unbinds for consistent cache keys

different bound variable values (e.g. kv cache positions) now produce
the same schedule cache key by unbinding BIND(DEFINE_VAR, CONST) before
computing the cache key and rebinding after lookup.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

* schedule: cache unbinds for consistent cache keys

When scheduling, BIND(DEFINE_VAR, CONST) nodes are now unbound to
tagged DEFINE_VARs before computing the cache key. This ensures that
the same computation with different bound values (e.g., different
KV cache positions in LLM) gets the same cache key and reuses the
cached schedule.

The fix:
- pm_pre_sched_cache: replaces BIND with tagged DEFINE_VAR
- pm_post_sched_cache: restores tagged DEFINE_VAR back to original BIND
- pm_remove_rangeify_tags: excludes DEFINE_VAR to preserve tags through rangeify
- var_vals extracted from BINDs before cache key computation

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

* schedule: fix BIND handling and add CLAUDE.md

- Handle BIND to RANGE in create_schedule (not matched by CONST pattern)
- Assert all BINDs on same variable have same value
- Add CLAUDE.md codebase guide

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
George Hotz
2025-12-12 16:40:10 -05:00
committed by GitHub
parent fcaed1e1dd
commit af86cae10c
6 changed files with 181 additions and 17 deletions

130
CLAUDE.md Normal file
View File

@@ -0,0 +1,130 @@
# Claude Code Guide for tinygrad
## Architecture Overview
tinygrad compiles tensor operations into optimized kernels. The pipeline:
1. **Tensor** (`tensor.py`) - User-facing API, creates UOp graph
2. **UOp** (`uop/ops.py`) - Unified IR for all operations (both tensor and kernel level)
3. **Schedule** (`engine/schedule.py`, `schedule/`) - Converts tensor UOps to kernel UOps
4. **Codegen** (`codegen/`) - Converts kernel UOps to device code
5. **Runtime** (`runtime/`) - Device-specific execution
## Key Concepts
### UOp (Universal Operation)
Everything is a UOp - tensors, operations, buffers, kernels. Key properties:
- `op`: The operation type (Ops enum)
- `dtype`: Data type
- `src`: Tuple of source UOps
- `arg`: Operation-specific argument
- `tag`: Optional tag for graph transformations
UOps are **immutable and cached** - creating the same UOp twice returns the same object (ucache).
### PatternMatcher
Used extensively for graph transformations:
```python
pm = PatternMatcher([
(UPat(Ops.ADD, src=(UPat.cvar("x"), UPat.cvar("x"))), lambda x: x * 2),
])
result = graph_rewrite(uop, pm)
```
### Schedule Cache
Schedules are cached by graph structure. BIND nodes (variables with bound values) are unbound before cache key computation so different values hit the same cache.
## Directory Structure
```
tinygrad/
├── tensor.py # Tensor class, user API
├── device.py # Buffer, device management
├── dtype.py # Data types
├── helpers.py # Utilities, environment vars
├── uop/
│ ├── ops.py # UOp class, Ops enum, PatternMatcher
│ ├── spec.py # UOp type verification
│ └── symbolic.py # Symbolic math simplification
├── engine/
│ ├── schedule.py # Schedule creation, caching
│ ├── realize.py # Tensor realization
│ ├── jit.py # JIT compilation
│ └── memory.py # Memory planning
├── schedule/
│ ├── rangeify.py # Convert movements to ranges
│ └── indexing.py # Index calculations
├── codegen/
│ ├── kernel.py # Kernel optimization
│ └── uopgraph.py # UOp graph transformations
├── renderer/ # Code generation (CUDA, Metal, etc.)
└── runtime/ # Device backends
```
## Testing
```bash
# Run specific test
python -m pytest test/unit/test_schedule_cache.py -xvs
# Run with timeout
python -m pytest test/test_symbolic_ops.py -x --timeout=60
# Debug with print
DEBUG=2 python -m pytest test/test_schedule.py::test_name -xvs
# Visualize UOp graphs
VIZ=1 python -c "from tinygrad import Tensor; Tensor.ones(10).sum().realize()"
```
## Common Environment Variables
- `DEBUG=1-4` - Increasing verbosity
- `VIZ=1` - Enable graph visualization
- `SPEC=1` - Enable UOp spec verification
- `NOOPT=1` - Disable optimizations
- `DEVICE=CPU/CUDA/AMD/METAL` - Set default device
## Debugging Tips
1. **Print UOp graphs**: `print(tensor.uop)` or `print(tensor.uop.sink())`
2. **Check schedule**: `tensor.schedule()` returns list of ScheduleItems
3. **Trace graph rewrites**: Use `VIZ=1` or add print in PatternMatcher callbacks
4. **Find UOps by type**: `[u for u in uop.toposort() if u.op is Ops.SOMETHING]`
## Style Notes
- 2-space indentation, 150 char line limit
- PatternMatchers should be defined at module level (slow to construct)
- Prefer `graph_rewrite` over manual graph traversal
- UOp methods like `.replace()` preserve tags unless explicitly changed
- Use `.rtag(value)` to add tags to UOps
## Common Patterns
### Graph Transformation
```python
def my_transform(ctx, x):
# Return new UOp or None to skip
return x.replace(arg=new_arg)
pm = PatternMatcher([
(UPat(Ops.SOMETHING, name="x"), my_transform),
])
result = graph_rewrite(input_uop, pm, ctx={})
```
### Finding Variables
```python
# Get all variables in a UOp graph
variables = uop.variables()
# Get bound variable values
var, val = bind_uop.unbind()
```
### Shape Handling
```python
# Shapes can be symbolic (contain UOps)
shape = tensor.shape # tuple[sint, ...] where sint = int | UOp
```