tinygrad.nn (#367)

* tinygrad.nn

* flake8

* working on pylint

* more pylint

* more pylint

* pylint passes

* networkx

* mypy can't infer that type

* junk
This commit is contained in:
George Hotz
2022-08-18 07:41:00 -07:00
committed by GitHub
parent 783c120a8c
commit b132de677d
28 changed files with 643 additions and 169 deletions

54
tinygrad/nn/optim.py Normal file
View File

@@ -0,0 +1,54 @@
# sorted in order of increasing complexity
from tinygrad.tensor import Tensor
class Optimizer:
def __init__(self, params):
self.params = [x for x in params if x.requires_grad]
def zero_grad(self):
for param in self.params:
param.grad = None
def realize(self, extra=None):
# TODO: corealize
for p in self.params + extra if extra is not None else self.params: p.realize()
class SGD(Optimizer):
def __init__(self, params, lr=0.001):
super().__init__(params)
self.lr = lr
def step(self):
for t in self.params:
t -= t.grad * self.lr
self.realize()
class RMSprop(Optimizer):
def __init__(self, params, lr=0.001, decay=0.9, eps=1e-8):
super().__init__(params)
self.lr, self.decay, self.eps = lr, decay, eps
self.v = [Tensor.zeros(*t.shape, device=params[0].device, requires_grad=False) for t in self.params]
def step(self):
for i, t in enumerate(self.params):
self.v[i] = self.decay * self.v[i] + (1.0 - self.decay) * (t.grad * t.grad)
t -= (t.grad * self.lr).div(self.v[i].sqrt() + self.eps)
self.realize(self.v)
class Adam(Optimizer):
def __init__(self, params, lr=0.001, b1=0.9, b2=0.999, eps=1e-8):
super().__init__(params)
self.lr, self.b1, self.b2, self.eps, self.t = lr, b1, b2, eps, 0
self.m = [Tensor.zeros(*t.shape, device=params[0].device, requires_grad=False) for t in self.params]
self.v = [Tensor.zeros(*t.shape, device=params[0].device, requires_grad=False) for t in self.params]
def step(self):
self.t = self.t + 1
a = self.lr * ((1.0 - self.b2**self.t)**0.5) / (1.0 - self.b1**self.t)
for i, t in enumerate(self.params):
self.m[i] = self.b1 * self.m[i] + (1.0 - self.b1) * t.grad
self.v[i] = self.b2 * self.v[i] + (1.0 - self.b2) * (t.grad * t.grad)
t -= a * self.m[i].div(self.v[i].sqrt() + self.eps)
self.realize(self.m + self.v)