From b22987961352247be545b5a6e7330f225f33cc78 Mon Sep 17 00:00:00 2001 From: chenyu Date: Wed, 13 Dec 2023 13:36:25 -0500 Subject: [PATCH] refactor _broadcasted (#2747) also moved the expand noop check to .expand. --- tinygrad/tensor.py | 26 ++++++++++++++------------ 1 file changed, 14 insertions(+), 12 deletions(-) diff --git a/tinygrad/tensor.py b/tinygrad/tensor.py index 43e41e79d9..ff3b69ddaf 100644 --- a/tinygrad/tensor.py +++ b/tinygrad/tensor.py @@ -276,6 +276,7 @@ class Tensor: new_shape = argfix(shape, *args) return mlops.Reshape.apply(self, shape=tuple([-prod(self.shape) // prod(new_shape) if s == -1 else (s if s is not None else self.shape[i]) for i,s in enumerate(new_shape)])) # noqa: E501 def expand(self, shape, *args) -> Tensor: + if shape == self.shape: return self return mlops.Expand.apply(self, shape=tuple([x if x != -1 else s for s,x in zip(self.shape, argfix(shape, *args))])) def permute(self, order, *args) -> Tensor: return mlops.Permute.apply(self, order=argfix(order, *args)) def flip(self, axis, *args) -> Tensor: return mlops.Flip.apply(self, axis=[x if x >= 0 else x+len(self.shape) for x in argfix(axis, *args)]) @@ -725,24 +726,25 @@ class Tensor: # ***** broadcasted binary mlops ***** + # TODO: y can be int here def _broadcasted(self, y:Union[Tensor, float], reverse:bool=False) -> Tuple[Tensor, Tensor]: - x: Tensor = self if not isinstance(y, Tensor): - if 0 in x.shape: return x, x.full_like(y) - y = Tensor(y, device=self.device, requires_grad=False, dtype=self.dtype if self.dtype != dtypes.bool and self.dtype.__class__ is not ImageDType else dtypes.float32) # noqa: E501 + # make y a Tensor + if 0 in self.shape: return self, self.full_like(y) + y_dtype = self.dtype if self.dtype != dtypes.bool and self.dtype.__class__ is not ImageDType else dtypes.float32 + y = Tensor(y, self.device, dtype=y_dtype, requires_grad=False) + + x: Tensor = self if reverse: x, y = y, x - if (xshape:=x.shape) == (yshape:=y.shape): return (x, y) - shape_delta = len(xshape) - len(yshape) - if shape_delta > 0: y = y.reshape((1,) * shape_delta + yshape) - elif shape_delta < 0: x = x.reshape((1,) * -shape_delta + xshape) - if (xshape:=x.shape) == (yshape:=y.shape): return (x, y) + # left pad shape with 1s + if len(y.shape) < len(x.shape): y = y.reshape((1,) * (len(x.shape) - len(y.shape)) + y.shape) + elif len(x.shape) < len(y.shape): x = x.reshape((1,) * (len(y.shape) - len(x.shape)) + x.shape) - shape_ret = tuple([max(x, y) for x, y in zip(xshape, yshape)]) - if xshape != shape_ret: x = x.expand(shape_ret) - if yshape != shape_ret: y = y.expand(shape_ret) - return (x, y) + broadcasted_shape = tuple(max(xi, yi) for xi, yi in zip(x.shape, y.shape)) + return x.expand(broadcasted_shape), y.expand(broadcasted_shape) + # TODO: x can be int here def _to_float(self, x:Union[Tensor, float]): return x.lazydata.base.op.arg if isinstance(x, Tensor) and x.lazydata.is_unrealized_contiguous_const() \ and not x.requires_grad and self._broadcasted(x)[0].shape == self.shape else x