remove Ops.VIEW and related UOp methods (#12522)

* remove Ops.VIEW and related UOp methods

* update abstractions2.py

* no ShapeTrackers in abstractions2.py

* it's a size 1
This commit is contained in:
qazal
2025-10-08 14:47:02 +03:00
committed by GitHub
parent 3b0b3a2e64
commit b6835f4134
14 changed files with 31 additions and 298 deletions

View File

@@ -6,8 +6,6 @@ from tinygrad.codegen.opt import Opt, OptOps
from tinygrad.codegen.gpudims import get_grouped_dims
from tinygrad.uop.ops import UOp, Ops, GroupOp
from tinygrad.device import Device, Buffer, is_dtype_supported
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.shape.view import View
from tinygrad.tensor import Tensor, _to_np_dtype
from tinygrad.engine.realize import run_schedule, lower_schedule, CompiledRunner, get_program
from tinygrad.helpers import Context, flatten, dedup, TC_SELECT, TC_OPT, RANGEIFY
@@ -38,24 +36,6 @@ class TestLinearizer(unittest.TestCase):
np.testing.assert_equal(a.numpy(), ta)
np.testing.assert_equal(b.numpy(), tb)
def test_multioutput(self):
dtype, st = dtypes.int, ShapeTracker.from_shape((8,))
g0, g1, g2, g3 = [UOp(Ops.DEFINE_GLOBAL, dtype.ptr(), arg=i) for i in range(4)]
a = UOp(Ops.LOAD, dtype, src=(g2.view(st),))
b = UOp(Ops.LOAD, dtype, src=(g3.view(st),))
out0 = UOp(Ops.STORE, dtypes.void, src=(g0.view(st), a + b))
out1 = UOp(Ops.STORE, dtypes.void, src=(g1.view(st), a * b))
sink = UOp(Ops.SINK, src=(out0, out1))
a_t = Tensor.full(st.shape, 2).contiguous().realize()
b_t = Tensor.full(st.shape, 3).contiguous().realize()
helper_linearizer_ast(sink, [a_t, b_t], wanna_output=[a_t.numpy()+b_t.numpy(), a_t.numpy()*b_t.numpy()])
uops = get_program(sink, opts=[]).uops
stores = [u for u in uops if u.op is Ops.STORE]
mutable_bufs = dedup(flatten([[x for x in u.src[0].toposort() if x.op is Ops.DEFINE_GLOBAL] for u in stores]))
assert len(mutable_bufs) == len(stores) == 2
self.assertSetEqual(set([u.arg for u in mutable_bufs]), set([0,1]))
def _test_no_nested_ranges(self, lins, skip=None):
for l in lins:
range_in_acc = flatten([[x for x in u.src if x.op is Ops.RANGE] for u in l.uops if u.op is Ops.DEFINE_REG])
@@ -437,41 +417,6 @@ class TestLinearizer(unittest.TestCase):
# the global store doesn't change
assert stores[1].src[1].dtype == dtypes.float
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.supports_float4, "test requires float4")
def test_skip_unmatching_upcasts(self):
Tensor.manual_seed(0)
c0 = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(9600), arg=0, src=())
c1 = c0.view(ShapeTracker(views=(View(shape=(240, 40, 1, 1), strides=(40, 1, 0, 0), offset=0, mask=None, contiguous=True),)))
c2 = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(9600), arg=1, src=())
c3 = c2.view(ShapeTracker(views=(View(shape=(240, 40, 1, 1), strides=(1, 240, 0, 0), offset=0, mask=None, contiguous=False),)))
c4 = c3.load()
c5 = c1.store(c4)
ast = c5.sink()
opt = [Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.LOCAL, axis=0, arg=16),
Opt(op=OptOps.LOCAL, axis=1, arg=2), Opt(op=OptOps.UPCAST, axis=3, arg=2)]
helper_linearizer_ast(ast, [Tensor.randn(240*40).realize()], opts=[opt])
out = [u for u in get_program(ast, opts=opt).uops if u.op is Ops.STORE][0]
assert out.src[1].op is Ops.VECTORIZE and out.src[1].dtype == dtypes.float.vec(4)
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.supports_float4, "test requires float4")
def test_skip_unmatching_upcasts_with_gep(self):
Tensor.manual_seed(0)
c0 = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(256), arg=0, src=())
c1 = c0.view(ShapeTracker(views=(View(shape=(8, 32, 1, 1), strides=(32, 1, 0, 0), offset=0, mask=None, contiguous=True),)))
c2 = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(256), arg=1, src=())
c3 = c2.view(ShapeTracker(views=(View(shape=(8, 32, 1, 1), strides=(1, 8, 0, 0), offset=0, mask=None, contiguous=False),)))
c4 = c3.load()
c5 = c1.store(c4)
ast = c5.sink()
opt = [Opt(op=OptOps.LOCAL, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=2, arg=2), Opt(op=OptOps.LOCAL, axis=1, arg=8),
Opt(op=OptOps.UPCAST, axis=1, arg=0), Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.LOCAL, axis=0, arg=8),
Opt(op=OptOps.UPCAST, axis=1, arg=0), Opt(op=OptOps.UPCAST, axis=0, arg=2)]
helper_linearizer_ast(ast, [Tensor.randn(8*32).realize()], opts=[opt])
out = [u for u in get_program(ast).uops if u.op is Ops.STORE][0]
assert out.src[1].op is Ops.VECTORIZE and out.src[1].dtype.count != 1
# *** helpers ***
def helper_realized_ast(r:Tensor|list[Tensor]) -> tuple[UOp, list[Buffer]]: