mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-02-11 07:05:04 -05:00
Refactor ASTs (#622)
* ugh worst branch name * compiler refactor continues * scc -> cloc * buf -> _buf * finish _buf, and program -> runtime * gpu is still working, clang isn't * clang in new style * ops_metal * something broke it * improve metal * clean up tons of cl crap * hack fix sync * cleaner gpu * gpu metal clang * cleanups * minor refactor * GPUCodegen * fix up LLVM * blind CUDA refactor * codegen / runtime * keep ops naming * linter passes * woah, llvm was allocing 4x what it needed to * bugfixes * fix openpilot compiler * fix compile_efficientnet * method cache should fix tests * deal with duped functions
This commit is contained in:
92
tinygrad/runtime/ops_gpu.py
Normal file
92
tinygrad/runtime/ops_gpu.py
Normal file
@@ -0,0 +1,92 @@
|
||||
from __future__ import annotations
|
||||
import platform, functools
|
||||
import numpy as np
|
||||
import pyopencl as cl # type: ignore
|
||||
from typing import Dict, Optional, List, ClassVar, Final
|
||||
from collections import defaultdict
|
||||
from tinygrad.helpers import IMAGE, DEBUG, getenv
|
||||
from tinygrad.ops import CompiledBuffer, GlobalCounters, RawBufferCopyInOut, RawBuffer
|
||||
from tinygrad.codegen.gpu import GPUCodegen, GPULanguage
|
||||
|
||||
OSX = platform.system() == "Darwin"
|
||||
OSX_TIMING_RATIO = (125/3) if OSX else 1.0 # see test/external_osx_profiling.py to determine this ratio. it's in like GPU clocks or something
|
||||
CLCACHE = getenv("CLCACHE", 1)
|
||||
FLOAT16 = getenv("FLOAT16", 0)
|
||||
|
||||
class _CL:
|
||||
@functools.cached_property
|
||||
def cl_ctx(self) -> cl.Context:
|
||||
devices : List[cl.Device] = sum([x.get_devices(device_type=cl.device_type.GPU) for x in cl.get_platforms()], [])
|
||||
if len(devices) == 0: devices = sum([x.get_devices(device_type=cl.device_type.CPU) for x in cl.get_platforms()], []) # settle for CPU
|
||||
if len(devices) > 1 or DEBUG >= 1: print(f"using {devices[getenv('CL_DEVICE', 0)]}")
|
||||
return cl.Context(devices=[devices[getenv("CL_DEVICE", 0)]])
|
||||
|
||||
@functools.cached_property
|
||||
def cl_queue(self) -> cl.CommandQueue:
|
||||
return cl.CommandQueue(CL.cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) # this is an in-order command queue
|
||||
CL = _CL()
|
||||
|
||||
class CLBuffer(RawBufferCopyInOut):
|
||||
# TODO: this can be in RawBuffer generically
|
||||
BUFFER_CACHE : ClassVar[Dict[int, List[cl.Buffer]]] = defaultdict(list)
|
||||
|
||||
def __init__(self, size):
|
||||
self.size = size
|
||||
if len(CLBuffer.BUFFER_CACHE[size]) > 0:
|
||||
self._cl = CLBuffer.BUFFER_CACHE[size].pop()
|
||||
else:
|
||||
# TODO: on GPU OOM, clear the cache
|
||||
self._cl = cl.Buffer(CL.cl_ctx, cl.mem_flags.READ_WRITE, size)
|
||||
GlobalCounters.mem_used += self._cl.size
|
||||
|
||||
def __del__(self):
|
||||
if CLCACHE: CLBuffer.BUFFER_CACHE[self._cl.size].append(self._cl)
|
||||
else: GlobalCounters.mem_used -= self._cl.size
|
||||
|
||||
def copyin(self, x:np.ndarray): cl.enqueue_copy(CL.cl_queue, self._cl, x, is_blocking=False)
|
||||
def copyout(self, x:np.ndarray): cl.enqueue_copy(CL.cl_queue, x, self._cl, is_blocking=True)
|
||||
|
||||
class CLImage(RawBuffer):
|
||||
fmt : Final = cl.ImageFormat(cl.channel_order.RGBA, cl.channel_type.HALF_FLOAT if FLOAT16 else cl.channel_type.FLOAT)
|
||||
IMAGE : Final = True
|
||||
|
||||
def __init__(self, shape):
|
||||
self._cl = cl.Image(CL.cl_ctx, cl.mem_flags.READ_WRITE, CLImage.fmt, shape=(shape[1], shape[0]))
|
||||
GlobalCounters.mem_used += self._cl.row_pitch * self._cl.height
|
||||
|
||||
def __del__(self): GlobalCounters.mem_used -= self._cl.row_pitch * self._cl.height
|
||||
|
||||
class CLProgram:
|
||||
def __init__(self, name:str, prg:str, binary=False, argdtypes=None):
|
||||
self.name, self.argdtypes, self.clprogram = name, argdtypes, cl.Program(CL.cl_ctx, CL.cl_ctx.devices, [prg]) if binary else cl.Program(CL.cl_ctx, prg) # type: ignore
|
||||
try:
|
||||
self._clprg = self.clprogram.build()
|
||||
except cl.RuntimeError as e:
|
||||
if DEBUG >= 3: print("FAILED TO BUILD", prg)
|
||||
raise e
|
||||
self.clprg = self._clprg.__getattr__(name)
|
||||
if DEBUG >= 5 and not OSX: print(self.clprogram.get_info(cl.program_info.BINARIES)[0].decode('utf-8')) # print the PTX for NVIDIA. TODO: probably broken for everything else
|
||||
if self.argdtypes is not None: self.clprg.set_scalar_arg_dtypes(self.argdtypes)
|
||||
|
||||
def __call__(self, global_size, local_size, *bufs, wait=False) -> Optional[float]:
|
||||
e = self.clprg(CL.cl_queue, global_size, local_size, *[x._cl if isinstance(x, (CLBuffer, CLImage)) else x for x in bufs])
|
||||
if wait:
|
||||
CL.cl_queue.finish()
|
||||
return ((e.profile.end - e.profile.start) * OSX_TIMING_RATIO) * 1e-9
|
||||
return None
|
||||
|
||||
class CLCodegen(GPUCodegen):
|
||||
lang = GPULanguage(
|
||||
kernel_prefix = "__kernel", buffer_prefix = "__global ", smem_prefix = "__local ",
|
||||
barrier = "barrier(CLK_LOCAL_MEM_FENCE);", float4 = "(float4)",
|
||||
gid = [f'get_global_id({i})' for i in range(3)], lid = [f'get_local_id({i})' for i in range(3)])
|
||||
|
||||
class GPUBuffer(CompiledBuffer):
|
||||
raw_buffer_type = CLBuffer
|
||||
# override this method for image
|
||||
@classmethod
|
||||
def create_raw_buffer(cls, shape, backing) -> RawBuffer:
|
||||
if len(shape) == 3 and shape[2] == 4 and IMAGE >= 2 and not backing: return CLImage(shape)
|
||||
else: return super().create_raw_buffer(shape, backing)
|
||||
codegen_type = CLCodegen
|
||||
runtime_type = CLProgram
|
||||
Reference in New Issue
Block a user