revert bert grad accumulation (#13596)

prep for the new split jit style
This commit is contained in:
chenyu
2025-12-05 17:30:08 -05:00
committed by GitHub
parent f20212e1ec
commit cb4c6324ef

View File

@@ -919,24 +919,16 @@ def train_rnnt():
pass
@TinyJit
def train_step_bert(model, optimizer, scheduler, loss_scaler:float, GPUS, grad_acc:int, **kwargs):
def train_step_bert(model, optimizer, scheduler, loss_scaler:float, input_ids:Tensor, segment_ids:Tensor, attention_mask:Tensor,
masked_positions:Tensor, masked_lm_ids:Tensor, masked_lm_weights:Tensor, next_sentence_labels:Tensor, GPUS):
for t in [input_ids, segment_ids, attention_mask, masked_positions, masked_lm_ids, masked_lm_weights, next_sentence_labels]:
if len(GPUS) > 1: t.shard_(GPUS, axis=0)
else: t.to_(GPUS[0])
optimizer.zero_grad()
for i in range(grad_acc):
input_ids, segment_ids = kwargs[f"input_ids{i}"], kwargs[f"segment_ids{i}"]
# NOTE: these two have different names
attention_mask, masked_positions = kwargs[f"input_mask{i}"], kwargs[f"masked_lm_positions{i}"]
masked_lm_ids, masked_lm_weights, next_sentence_labels = kwargs[f"masked_lm_ids{i}"], kwargs[f"masked_lm_weights{i}"], kwargs[f"next_sentence_labels{i}"]
for t in [input_ids, segment_ids, attention_mask, masked_positions, masked_lm_ids, masked_lm_weights, next_sentence_labels]:
if len(GPUS) > 1: t.shard_(GPUS, axis=0)
else: t.to_(GPUS[0])
lm_logits, seq_relationship_logits = model(input_ids, attention_mask, masked_positions, segment_ids)
loss = model.loss(lm_logits, seq_relationship_logits, masked_lm_ids, masked_lm_weights, next_sentence_labels)
(loss * loss_scaler).backward()
# TODO: OOM without this realize with large grad_acc
Tensor.realize(*[p.grad for p in optimizer.params])
lm_logits, seq_relationship_logits = model(input_ids, attention_mask, masked_positions, segment_ids)
loss = model.loss(lm_logits, seq_relationship_logits, masked_lm_ids, masked_lm_weights, next_sentence_labels)
(loss * loss_scaler).backward()
global_norm = Tensor(0.0, dtype=dtypes.float32, device=optimizer[0].device)
for p in optimizer.params:
@@ -1014,7 +1006,8 @@ def train_bert():
# ** hyperparameters **
BS = config["BS"] = getenv("BS", 11 * len(GPUS) if dtypes.default_float in (dtypes.float16, dtypes.bfloat16) else 8 * len(GPUS))
grad_acc = config["GRADIENT_ACC_STEPS"] = getenv("GRADIENT_ACC_STEPS", 1)
# TODO: mlperf logging
# TODO: implement grad accumulation + mlperf logging
assert grad_acc == 1
GBS = config["GLOBAL_BATCH_SIZE"] = BS * grad_acc
EVAL_BS = config["EVAL_BS"] = getenv("EVAL_BS", 1 * len(GPUS))
max_lr = config["OPT_BASE_LEARNING_RATE"] = getenv("OPT_BASE_LEARNING_RATE", 0.000175 * math.sqrt(GBS/96))
@@ -1131,7 +1124,7 @@ def train_bert():
# ** train loop **
wc_start = time.perf_counter()
i, train_data = start_step, [next(train_it) for _ in range(grad_acc)]
i, train_data = start_step, next(train_it)
if RUNMLPERF:
if MLLOGGER:
@@ -1144,13 +1137,14 @@ def train_bert():
st = time.perf_counter()
GlobalCounters.reset()
with WallTimeEvent(BenchEvent.STEP):
data = {f"{k}{i}":v for i,d in enumerate(train_data) for k,v in d.items()}
loss, global_norm, lr = train_step_bert(model, optimizer_group, scheduler_group, loss_scaler, GPUS, grad_acc, **data)
loss, global_norm, lr = train_step_bert(model, optimizer_group, scheduler_group, loss_scaler,
train_data["input_ids"], train_data["segment_ids"], train_data["input_mask"], train_data["masked_lm_positions"], \
train_data["masked_lm_ids"], train_data["masked_lm_weights"], train_data["next_sentence_labels"], GPUS)
pt = time.perf_counter()
try:
next_data = [next(train_it) for _ in range(grad_acc)]
next_data = next(train_it)
except StopIteration:
next_data = None