remove tee in benchmark (#13954)

This commit is contained in:
chenyu
2026-01-01 10:55:36 -05:00
committed by GitHub
parent 24723327ac
commit ce84a23142

View File

@@ -49,19 +49,19 @@ jobs:
- name: Print macOS version
run: sw_vers
- name: Run Stable Diffusion
run: BENCHMARK_LOG=stable_diffusion JIT=1 ASSERT_MIN_STEP_TIME=720 python3.11 examples/stable_diffusion.py --fp16 --seed 0 --noshow --timing | tee sd.txt
run: BENCHMARK_LOG=stable_diffusion JIT=1 ASSERT_MIN_STEP_TIME=720 python3.11 examples/stable_diffusion.py --fp16 --seed 0 --noshow --timing
- name: Run Stable Diffusion without fp16
run: BENCHMARK_LOG=stable_diffusion_fp32 JIT=1 ASSERT_MIN_STEP_TIME=720 python3.11 examples/stable_diffusion.py --seed 0 --noshow --timing | tee sd_no_fp16.txt
run: BENCHMARK_LOG=stable_diffusion_fp32 JIT=1 ASSERT_MIN_STEP_TIME=720 python3.11 examples/stable_diffusion.py --seed 0 --noshow --timing
- name: Run Stable Diffusion v2
# TODO: very slow step time
run: BENCHMARK_LOG=stable_diffusion_v2 JIT=1 ASSERT_MIN_STEP_TIME=4500 python3.11 examples/sdv2.py --fp16 --seed 0 --noshow --timing | tee sdv2.txt
run: BENCHMARK_LOG=stable_diffusion_v2 JIT=1 ASSERT_MIN_STEP_TIME=4500 python3.11 examples/sdv2.py --fp16 --seed 0 --noshow --timing
# process replay can't capture this, the graph is too large
- name: Run SDXL
run: BENCHMARK_LOG=stable_diffusion_xl ASSERT_MIN_STEP_TIME=5000 CAPTURE_PROCESS_REPLAY=0 JIT=1 python3.11 examples/sdxl.py --seed 0 --noshow --timing | tee sdxl.txt
run: BENCHMARK_LOG=stable_diffusion_xl ASSERT_MIN_STEP_TIME=5000 CAPTURE_PROCESS_REPLAY=0 JIT=1 python3.11 examples/sdxl.py --seed 0 --noshow --timing
- name: Run model inference benchmark
run: METAL=1 NOCLANG=1 python3.11 test/external/external_model_benchmark.py
- name: Test speed vs torch
run: BIG=2 MPS=1 python3.11 test/speed/external_test_speed_v_torch.py | tee torch_speed.txt
run: BIG=2 MPS=1 python3.11 test/speed/external_test_speed_v_torch.py
- name: Test tensor cores
run: METAL=1 python3.11 test/opt/test_tensor_cores.py
- name: Test AMX tensor cores
@@ -71,84 +71,59 @@ jobs:
DEBUG=2 CPU=1 CPU_LLVM=0 AMX=1 python3.11 test/opt/test_gen_float4.py TestFloat4.test_float4_multidim_amx TestFloat4.test_float4_multidim_unaligned_load_amx
DEBUG=2 CPU=1 CPU_LLVM=1 AMX=1 python3.11 test/opt/test_gen_float4.py TestFloat4.test_float4_multidim_amx TestFloat4.test_float4_multidim_unaligned_load_amx
- name: Run Tensor Core GEMM (float)
run: DEBUG=2 SHOULD_USE_TC=1 python3.11 extra/gemm/simple_matmul.py | tee matmul.txt
run: DEBUG=2 SHOULD_USE_TC=1 python3.11 extra/gemm/simple_matmul.py
- name: Run Tensor Core GEMM (half)
run: DEBUG=2 SHOULD_USE_TC=1 HALF=1 python3.11 extra/gemm/simple_matmul.py | tee matmul_half.txt
run: DEBUG=2 SHOULD_USE_TC=1 HALF=1 python3.11 extra/gemm/simple_matmul.py
- name: Run Tensor Core GEMM (bfloat16)
run: DEBUG=2 SHOULD_USE_TC=1 BFLOAT16=1 python3.11 extra/gemm/simple_matmul.py | tee matmul_bfloat16.txt
run: DEBUG=2 SHOULD_USE_TC=1 BFLOAT16=1 python3.11 extra/gemm/simple_matmul.py
- name: Fuzz Padded Tensor Core GEMM
run: METAL=1 M_START=6 M_STOP=10 M_STEP=1 N_START=6 N_STOP=10 N_STEP=1 K_START=6 K_STOP=24 K_STEP=1 TC_OPT=2 DEBUG=2 python3.11 ./extra/gemm/fuzz_matmul.py
- name: Run LLaMA
run: |
BENCHMARK_LOG=llama_nojit JIT=0 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt
BENCHMARK_LOG=llama JIT=1 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt
BENCHMARK_LOG=llama_nojit JIT=0 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing
BENCHMARK_LOG=llama JIT=1 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run LLaMA with BEAM
run: BENCHMARK_LOG=llama_beam JITBEAM=2 IGNORE_BEAM_CACHE=1 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt
run: BENCHMARK_LOG=llama_beam JITBEAM=2 IGNORE_BEAM_CACHE=1 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run quantized LLaMA
run: |
BENCHMARK_LOG=llama_int8 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing --quantize int8 | tee llama_int8.txt
BENCHMARK_LOG=llama_nf4 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing --quantize nf4 | tee llama_nf4.txt
BENCHMARK_LOG=llama_int8 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing --quantize int8
BENCHMARK_LOG=llama_nf4 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing --quantize nf4
- name: Run quantized LLaMA3
run: |
BENCHMARK_LOG=llama3_int8 python3.11 examples/llama3.py --size 8B --temperature 0 --benchmark --quantize int8 | tee llama3_int8.txt
BENCHMARK_LOG=llama3_nf4 python3.11 examples/llama3.py --size 8B --temperature 0 --benchmark --quantize nf4 | tee llama3_nf4.txt
BENCHMARK_LOG=llama3_int8 python3.11 examples/llama3.py --size 8B --temperature 0 --benchmark --quantize int8
BENCHMARK_LOG=llama3_nf4 python3.11 examples/llama3.py --size 8B --temperature 0 --benchmark --quantize nf4
#- name: Run LLaMA 7B on 4 (virtual) GPUs
# run: python3.11 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt
# run: python3.11 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run GPT2
run: |
BENCHMARK_LOG=gpt2_nojit JIT=0 python3.11 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt
BENCHMARK_LOG=gpt2 JIT=1 ASSERT_MIN_STEP_TIME=13 python3.11 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt
BENCHMARK_LOG=gpt2_nojit JIT=0 python3.11 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing
BENCHMARK_LOG=gpt2 JIT=1 ASSERT_MIN_STEP_TIME=13 python3.11 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run GPT2 w HALF
run: BENCHMARK_LOG=gpt2_half HALF=1 python3.11 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half.txt
run: BENCHMARK_LOG=gpt2_half HALF=1 python3.11 examples/gpt2.py --count 10 --temperature 0 --timing
- name: Run GPT2 w HALF/BEAM
run: BENCHMARK_LOG=gpt2_half_beam HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3.11 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half_beam.txt
run: BENCHMARK_LOG=gpt2_half_beam HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3.11 examples/gpt2.py --count 10 --temperature 0 --timing
- name: Run OLMoE
run: BENCHMARK_LOG=olmoe python3.11 examples/olmoe.py
- name: Train MNIST
run: time PYTHONPATH=. TARGET_EVAL_ACC_PCT=96.0 python3.11 examples/beautiful_mnist.py | tee beautiful_mnist.txt
run: time PYTHONPATH=. TARGET_EVAL_ACC_PCT=96.0 python3.11 examples/beautiful_mnist.py
# NOTE: this is failing in CI. it is not failing on my machine and I don't really have a way to debug it
# the error is "RuntimeError: Internal Error (0000000e:Internal Error)"
#- name: Run 10 CIFAR training steps
# run: BENCHMARK_LOG=cifar_10steps JIT=1 ASSERT_MIN_STEP_TIME=3000 STEPS=10 python3.11 examples/hlb_cifar10.py | tee train_cifar.txt
# run: BENCHMARK_LOG=cifar_10steps JIT=1 ASSERT_MIN_STEP_TIME=3000 STEPS=10 python3.11 examples/hlb_cifar10.py
#- name: Run 10 CIFAR training steps w HALF
# run: BENCHMARK_LOG=cifar_10steps_half JIT=2 ASSERT_MIN_STEP_TIME=3000 STEPS=10 DEFAULT_FLOAT=HALF python3.11 examples/hlb_cifar10.py | tee train_cifar_half.txt
# run: BENCHMARK_LOG=cifar_10steps_half JIT=2 ASSERT_MIN_STEP_TIME=3000 STEPS=10 DEFAULT_FLOAT=HALF python3.11 examples/hlb_cifar10.py
#- name: Run 10 CIFAR training steps w BF16
# run: STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3.11 examples/hlb_cifar10.py | tee train_cifar_bf16.txt
# run: STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3.11 examples/hlb_cifar10.py
# TODO: too slow
# - name: Run 10 CIFAR training steps w winograd
# run: BENCHMARK_LOG=cifar_10steps_wino JIT=1 ASSERT_MIN_STEP_TIME=150 WINO=1 STEPS=10 python3.11 examples/hlb_cifar10.py | tee train_cifar_wino.txt
# run: BENCHMARK_LOG=cifar_10steps_wino JIT=1 ASSERT_MIN_STEP_TIME=150 WINO=1 STEPS=10 python3.11 examples/hlb_cifar10.py
- uses: actions/upload-artifact@v4
with:
name: Speed (Mac)
path: |
onnx_inference_speed.csv
torch_speed.txt
llama_unjitted.txt
llama_jitted.txt
llama_beam.txt
llama_int8.txt
llama_nf4.txt
llama3_int8.txt
llama3_nf4.txt
llama_four_gpu.txt
gpt2_unjitted.txt
gpt2_jitted.txt
gpt2_half.txt
gpt2_half_beam.txt
matmul.txt
matmul_half.txt
matmul_bfloat16.txt
sd.txt
sd_no_fp16.txt
sdv2.txt
sdxl.txt
beautiful_mnist.txt
train_cifar.txt
train_cifar_half.txt
train_cifar_bf16.txt
train_cifar_wino.txt
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3.11 process_replay.py
@@ -215,7 +190,7 @@ jobs:
- name: Run model inference benchmark
run: NV=1 CAPTURE_PROCESS_REPLAY=0 NOCLANG=1 python3 test/external/external_model_benchmark.py
- name: Test speed vs torch
run: NV=1 CAPTURE_PROCESS_REPLAY=0 HALF=1 BIG=2 TORCHCUDA=1 python3 test/speed/external_test_speed_v_torch.py | tee torch_speed.txt
run: NV=1 CAPTURE_PROCESS_REPLAY=0 HALF=1 BIG=2 TORCHCUDA=1 python3 test/speed/external_test_speed_v_torch.py
- name: Test speed vs theoretical
run: NV=1 IGNORE_BEAM_CACHE=1 CCACHE=0 BEAM_DEBUG=1 DEBUG=1 python -m pytest -rA test/external/speed_v_theoretical.py --durations=20
- name: Test benchmark allreduce
@@ -226,79 +201,58 @@ jobs:
NV=1 NV_PTX=1 ALLOW_TF32=1 python3 test/opt/test_tensor_cores.py
- name: Run Tensor Core GEMM (CUDA)
run: |
CUDA=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul.txt
CUDA=1 SHOULD_USE_TC=1 BFLOAT16=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_bfloat16.txt
CUDA=1 SHOULD_USE_TC=1 ALLOW_TF32=1 DEBUG=2 ATOL=2e-2 python3 extra/gemm/simple_matmul.py | tee matmul_tf32.txt
CUDA=1 SHOULD_USE_TC=1 FP8E4M3=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_fp8.txt
CUDA=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py
CUDA=1 SHOULD_USE_TC=1 BFLOAT16=1 DEBUG=2 python3 extra/gemm/simple_matmul.py
CUDA=1 SHOULD_USE_TC=1 ALLOW_TF32=1 DEBUG=2 ATOL=2e-2 python3 extra/gemm/simple_matmul.py
CUDA=1 SHOULD_USE_TC=1 FP8E4M3=1 DEBUG=2 python3 extra/gemm/simple_matmul.py
- name: Run Tensor Core GEMM (PTX)
run: NV=1 NV_PTX=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_ptx.txt
run: NV=1 NV_PTX=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py
- name: Run Tensor Core GEMM (NV)
run: NV=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_nv.txt
run: NV=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py
- name: Test NV=1
run: DEBUG=2 NV=1 python -m pytest -rA test/test_tiny.py
- name: Test CUDA=1
run: DEBUG=2 CUDA=1 python -m pytest -rA test/test_tiny.py
- name: Run Stable Diffusion
run: BENCHMARK_LOG=stable_diffusion NV=1 python3 examples/stable_diffusion.py --fp16 --seed 0 --noshow --timing | tee sd.txt
run: BENCHMARK_LOG=stable_diffusion NV=1 python3 examples/stable_diffusion.py --fp16 --seed 0 --noshow --timing
# TODO: too slow
# - name: Run SDXL
# run: BENCHMARK_LOG=stable_diffusion_xl ASSERT_MIN_STEP_TIME=2000 CAPTURE_PROCESS_REPLAY=0 NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/sdxl.py --seed 0 --noshow --timing | tee sdxl.txt
# run: BENCHMARK_LOG=stable_diffusion_xl ASSERT_MIN_STEP_TIME=2000 CAPTURE_PROCESS_REPLAY=0 NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/sdxl.py --seed 0 --noshow --timing
- name: Run LLaMA
run: |
BENCHMARK_LOG=llama_nojit NV=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt
BENCHMARK_LOG=llama NV=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt
BENCHMARK_LOG=llama_nojit NV=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing
BENCHMARK_LOG=llama NV=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run LLaMA with BEAM
run: BENCHMARK_LOG=llama_beam NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt
run: BENCHMARK_LOG=llama_beam NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing
# - name: Run LLaMA 7B on 4 GPUs
# run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt
# run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing
# - name: Run LLaMA 7B on 6 GPUs
# run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_six_gpu.txt
# run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run LLaMA-3 8B BEAM
run: BENCHMARK_LOG=llama3_beam NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --size 8B --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_beam.txt
run: BENCHMARK_LOG=llama3_beam NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --size 8B --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0
- name: Run LLaMA-3 8B on 4 GPUs with BEAM
run: BENCHMARK_LOG=llama3_beam_4gpu NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_four_gpu.txt
run: BENCHMARK_LOG=llama3_beam_4gpu NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0
- name: Run quantized LLaMA3
run: BENCHMARK_LOG=llama3_fp8 python3 examples/llama3.py --size 8B --model weights/LLaMA-3/8B-SF-DPO/ --temperature 0 --benchmark --quantize fp8 | tee llama3_fp8.txt
run: BENCHMARK_LOG=llama3_fp8 python3 examples/llama3.py --size 8B --model weights/LLaMA-3/8B-SF-DPO/ --temperature 0 --benchmark --quantize fp8
# - name: Run LLaMA-3 8B on 6 GPUs
# run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_six_gpu.txt
# run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0
# - name: Run LLaMA-2 70B
# run: NV=1 CAPTURE_PROCESS_REPLAY=0 MAX_CONTEXT=256 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_2_70B.txt
# run: NV=1 CAPTURE_PROCESS_REPLAY=0 MAX_CONTEXT=256 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run Mixtral 8x7B
run: time BENCHMARK_LOG=mixtral NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/mixtral.py --temperature 0 --count 10 --timing | tee mixtral.txt
run: time BENCHMARK_LOG=mixtral NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/mixtral.py --temperature 0 --count 10 --timing
- name: Run GPT2
run: |
BENCHMARK_LOG=gpt2_nojit NV=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt
BENCHMARK_LOG=gpt2 NV=1 JIT=1 ASSERT_MIN_STEP_TIME=4 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt
BENCHMARK_LOG=gpt2_nojit NV=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing
BENCHMARK_LOG=gpt2 NV=1 JIT=1 ASSERT_MIN_STEP_TIME=4 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run GPT2 w HALF
run: BENCHMARK_LOG=gpt2_half NV=1 HALF=1 ASSERT_MIN_STEP_TIME=6 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half.txt
run: BENCHMARK_LOG=gpt2_half NV=1 HALF=1 ASSERT_MIN_STEP_TIME=6 python3 examples/gpt2.py --count 10 --temperature 0 --timing
- name: Run GPT2 w HALF/BEAM
run: BENCHMARK_LOG=gpt2_half_beam NV=1 HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half_beam.txt
run: BENCHMARK_LOG=gpt2_half_beam NV=1 HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing
- uses: actions/upload-artifact@v4
with:
name: Speed (NVIDIA)
path: |
onnx_inference_speed.csv
torch_speed.txt
matmul.txt
matmul_bfloat16.txt
matmul_tf32.txt
matmul_ptx.txt
matmul_nv.txt
sd.txt
sdxl.txt
llama_unjitted.txt
llama_jitted.txt
llama_beam.txt
llama3_beam.txt
llama3_four_gpu.txt
llama3_six_gpu.txt
llama3_fp8.txt
llama_2_70B.txt
mixtral.txt
gpt2_unjitted.txt
gpt2_jitted.txt
gpt2_half.txt
gpt2_half_beam.txt
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
@@ -339,42 +293,28 @@ jobs:
- name: HEVC Decode Benchmark
run: VALIDATE=1 MAX_FRAMES=100 NV=1 PYTHONPATH=. python3 extra/hevc/decode.py
- name: Train MNIST
run: time PYTHONPATH=. NV=1 TARGET_EVAL_ACC_PCT=96.0 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt
run: time PYTHONPATH=. NV=1 TARGET_EVAL_ACC_PCT=96.0 python3 examples/beautiful_mnist.py
- name: Run 10 CIFAR training steps
run: BENCHMARK_LOG=cifar_10steps ASSERT_MIN_STEP_TIME=120 NV=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt
run: BENCHMARK_LOG=cifar_10steps ASSERT_MIN_STEP_TIME=120 NV=1 STEPS=10 python3 examples/hlb_cifar10.py
- name: Run 10 CIFAR training steps w HALF
run: BENCHMARK_LOG=cifar_10steps_half ASSERT_MIN_STEP_TIME=110 NV=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt
run: BENCHMARK_LOG=cifar_10steps_half ASSERT_MIN_STEP_TIME=110 NV=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py
- name: Run 10 CIFAR training steps w BF16
run: BENCHMARK_LOG=cifar_10steps_bf16 ASSERT_MIN_STEP_TIME=120 NV=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt
run: BENCHMARK_LOG=cifar_10steps_bf16 ASSERT_MIN_STEP_TIME=120 NV=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py
# - name: Run 10 CIFAR training steps w winograd
# run: BENCHMARK_LOG=cifar_10steps_half_wino ASSERT_MIN_STEP_TIME=350 NV=1 CAPTURE_PROCESS_REPLAY=0 WINO=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_wino.txt
# run: BENCHMARK_LOG=cifar_10steps_half_wino ASSERT_MIN_STEP_TIME=350 NV=1 WINO=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py
- name: Run full CIFAR training w 1 GPU
run: time BENCHMARK_LOG=cifar NV=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py | tee train_cifar_one_gpu.txt
run: time BENCHMARK_LOG=cifar NV=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py
- name: Run full CIFAR training steps w 6 GPUS
run: time BENCHMARK_LOG=cifar_6gpu CAPTURE_PROCESS_REPLAY=0 NV=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py | tee train_cifar_six_gpu.txt
run: time BENCHMARK_LOG=cifar_6gpu CAPTURE_PROCESS_REPLAY=0 NV=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py
- name: Run MLPerf resnet eval on training data
run: time BENCHMARK_LOG=resnet_eval NV=1 MODEL=resnet python3 examples/mlperf/model_eval.py
- name: Run 10 MLPerf ResNet50 training steps (1 gpu)
run: BENCHMARK_LOG=resnet_10steps NV=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet_one_gpu.txt
run: BENCHMARK_LOG=resnet_10steps NV=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py
- name: Run 10 MLPerf ResNet50 training steps (6 gpu)
run: BENCHMARK_LOG=resnet_10steps_6gpu NV=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt
run: BENCHMARK_LOG=resnet_10steps_6gpu NV=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py
- name: Run 10 MLPerf Bert training steps (6 gpu)
# TODO: remove BERT_LAYERS once scheduler is fast
run: BENCHMARK_LOG=bert_10steps_6gpu NV=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=72 GPUS=6 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py | tee train_bert.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (NVIDIA Training)
path: |
beautiful_mnist.txt
train_cifar.txt
train_cifar_half.txt
train_cifar_bf16.txt
train_cifar_wino.txt
train_cifar_one_gpu.txt
train_cifar_six_gpu.txt
train_resnet.txt
train_resnet_one_gpu.txt
train_bert.txt
run: BENCHMARK_LOG=bert_10steps_6gpu NV=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=72 GPUS=6 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
@@ -426,7 +366,7 @@ jobs:
#- name: Test speed vs torch
# run: |
# python3 -c "import torch; print(torch.__version__)"
# LD_PRELOAD="/opt/rocm/lib/libhsa-runtime64.so" HSA=1 BIG=2 TORCHCUDA=1 python3 test/speed/external_test_speed_v_torch.py | tee torch_speed.txt
# LD_PRELOAD="/opt/rocm/lib/libhsa-runtime64.so" HSA=1 BIG=2 TORCHCUDA=1 python3 test/speed/external_test_speed_v_torch.py
- name: Test speed vs theoretical
run: AMD=1 IGNORE_BEAM_CACHE=1 CCACHE=0 BEAM_DEBUG=1 DEBUG=1 python -m pytest -rA test/external/speed_v_theoretical.py --durations=20
- name: Test tensor cores AMD_LLVM=0
@@ -437,7 +377,7 @@ jobs:
- name: Run Tensor Core GEMM (AMD)
run: |
AMD=1 SHOULD_USE_TC=1 BFLOAT16=1 DEBUG=2 python3 extra/gemm/simple_matmul.py
AMD=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 ATOL=2e-2 python3 extra/gemm/simple_matmul.py | tee matmul_amd.txt
AMD=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 ATOL=2e-2 python3 extra/gemm/simple_matmul.py
- name: Test AMD=1
run: DEBUG=2 AMD=1 python -m pytest -rA test/test_tiny.py
#- name: Test HIP=1
@@ -452,61 +392,39 @@ jobs:
- name: Test AM warm start time
run: time AMD=1 python3 test/test_tiny.py TestTiny.test_plus
- name: Run Stable Diffusion
run: BENCHMARK_LOG=stable_diffusion ASSERT_MIN_STEP_TIME=550 AMD=1 python3 examples/stable_diffusion.py --fp16 --seed 0 --noshow --timing | tee sd.txt
run: BENCHMARK_LOG=stable_diffusion ASSERT_MIN_STEP_TIME=550 AMD=1 python3 examples/stable_diffusion.py --fp16 --seed 0 --noshow --timing
- name: Run SDXL
run: BENCHMARK_LOG=stable_diffusion_xl ASSERT_MIN_STEP_TIME=3200 CAPTURE_PROCESS_REPLAY=0 AMD=1 python3 examples/sdxl.py --seed 0 --noshow --timing | tee sdxl.txt
run: BENCHMARK_LOG=stable_diffusion_xl ASSERT_MIN_STEP_TIME=3200 CAPTURE_PROCESS_REPLAY=0 AMD=1 python3 examples/sdxl.py --seed 0 --noshow --timing
- name: Run LLaMA 7B
run: |
BENCHMARK_LOG=llama_nojit AMD=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt
BENCHMARK_LOG=llama AMD=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt
BENCHMARK_LOG=llama_nojit AMD=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing
BENCHMARK_LOG=llama AMD=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run LLaMA 7B with BEAM
run: BENCHMARK_LOG=llama_beam AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt
run: BENCHMARK_LOG=llama_beam AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing
# - name: Run LLaMA 7B on 4 GPUs
# run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt
# run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing
# - name: Run LLaMA 7B on 6 GPUs
# run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_six_gpu.txt
# run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run LLaMA-3 8B BEAM
run: BENCHMARK_LOG=llama3_beam AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --size 8B --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_beam.txt
run: BENCHMARK_LOG=llama3_beam AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --size 8B --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0
- name: Run LLaMA-3 8B on 4 GPUs with BEAM
run: BENCHMARK_LOG=llama3_beam_4gpu AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_four_gpu.txt
run: BENCHMARK_LOG=llama3_beam_4gpu AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0
# - name: Run LLaMA-3 8B on 6 GPUs
# run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_six_gpu.txt
# run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0
#- name: Restore amdgpu
# run: sudo modprobe amdgpu
# - name: Run LLaMA-2 70B
# run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_2_70B.txt
# run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run Mixtral 8x7B
run: time BENCHMARK_LOG=mixtral AMD=1 python3 examples/mixtral.py --temperature 0 --count 10 --timing | tee mixtral.txt
run: time BENCHMARK_LOG=mixtral AMD=1 python3 examples/mixtral.py --temperature 0 --count 10 --timing
- name: Run GPT2
run: |
BENCHMARK_LOG=gpt2_nojit AMD=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt
BENCHMARK_LOG=gpt2 AMD=1 JIT=1 ASSERT_MIN_STEP_TIME=5 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt
BENCHMARK_LOG=gpt2_nojit AMD=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing
BENCHMARK_LOG=gpt2 AMD=1 JIT=1 ASSERT_MIN_STEP_TIME=5 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing
- name: Run GPT2 w HALF
run: BENCHMARK_LOG=gpt2_half AMD=1 HALF=1 ASSERT_MIN_STEP_TIME=5 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half.txt
run: BENCHMARK_LOG=gpt2_half AMD=1 HALF=1 ASSERT_MIN_STEP_TIME=5 python3 examples/gpt2.py --count 10 --temperature 0 --timing
- name: Run GPT2 w HALF/BEAM
run: BENCHMARK_LOG=gpt2_half_beam AMD=1 HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half_beam.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (AMD)
path: |
onnx_inference_speed.csv
torch_speed.txt
llama_unjitted.txt
llama_jitted.txt
llama_beam.txt
llama3_beam.txt
llama3_four_gpu.txt
llama3_six_gpu.txt
llama_2_70B.txt
gpt2_unjitted.txt
gpt2_jitted.txt
gpt2_half.txt
gpt2_half_beam.txt
matmul.txt
matmul_amd.txt
sd.txt
sdxl.txt
mixtral.txt
run: BENCHMARK_LOG=gpt2_half_beam AMD=1 HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
@@ -543,31 +461,20 @@ jobs:
- name: reset process replay
run: test/external/process_replay/reset.py
- name: Train MNIST
run: time PYTHONPATH=. AMD=1 TARGET_EVAL_ACC_PCT=96.0 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt
run: time PYTHONPATH=. AMD=1 TARGET_EVAL_ACC_PCT=96.0 python3 examples/beautiful_mnist.py
- name: Run 10 CIFAR training steps
run: BENCHMARK_LOG=cifar_10steps ASSERT_MIN_STEP_TIME=200 AMD=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt
run: BENCHMARK_LOG=cifar_10steps ASSERT_MIN_STEP_TIME=200 AMD=1 STEPS=10 python3 examples/hlb_cifar10.py
- name: Run 10 CIFAR training steps w HALF
run: BENCHMARK_LOG=cifar_10steps_half ASSERT_MIN_STEP_TIME=200 AMD=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt
run: BENCHMARK_LOG=cifar_10steps_half ASSERT_MIN_STEP_TIME=200 AMD=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py
# - name: Run 10 CIFAR training steps w BF16
# run: BENCHMARK_LOG=cifar_10steps_bf16 ASSERT_MIN_STEP_TIME=288 AMD=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt
# run: BENCHMARK_LOG=cifar_10steps_bf16 ASSERT_MIN_STEP_TIME=288 AMD=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py
# TODO: too slow
# - name: Run 10 CIFAR training steps w winograd
# run: BENCHMARK_LOG=cifar_10steps_half_wino ASSERT_MIN_STEP_TIME=66 AMD=1 WINO=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_wino.txt
# run: BENCHMARK_LOG=cifar_10steps_half_wino ASSERT_MIN_STEP_TIME=66 AMD=1 WINO=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py
- name: Run full CIFAR training w 1 GPU
run: time BENCHMARK_LOG=cifar AMD=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py | tee train_cifar_one_gpu.txt
run: time BENCHMARK_LOG=cifar AMD=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py
- name: Run full CIFAR training steps w 6 GPUS
run: time BENCHMARK_LOG=cifar_6gpu AMD=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py | tee train_cifar_six_gpu.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (AMD Training)
path: |
beautiful_mnist.txt
train_cifar.txt
train_cifar_half.txt
train_cifar_bf16.txt
train_cifar_wino.txt
train_cifar_one_gpu.txt
train_cifar_six_gpu.txt
run: time BENCHMARK_LOG=cifar_6gpu AMD=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
@@ -606,19 +513,12 @@ jobs:
- name: Run MLPerf resnet eval
run: time BENCHMARK_LOG=resnet_eval AMD=1 MODEL=resnet python3 examples/mlperf/model_eval.py
- name: Run 10 MLPerf ResNet50 training steps (1 gpu)
run: BENCHMARK_LOG=resnet_10steps AMD=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet_one_gpu.txt
run: BENCHMARK_LOG=resnet_10steps AMD=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py
- name: Run 10 MLPerf ResNet50 training steps (6 gpu)
run: BENCHMARK_LOG=resnet_10steps_6gpu AMD=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt
run: BENCHMARK_LOG=resnet_10steps_6gpu AMD=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py
- name: Run 10 MLPerf Bert training steps (6 gpu)
# TODO: remove BERT_LAYERS once scheduler is fast
run: BENCHMARK_LOG=bert_10steps_6gpu AMD=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=72 GPUS=6 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py | tee train_bert.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (AMD MLPerf)
path: |
train_resnet.txt
train_resnet_one_gpu.txt
train_bert.txt
run: BENCHMARK_LOG=bert_10steps_6gpu AMD=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=72 GPUS=6 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
@@ -708,7 +608,7 @@ jobs:
# AMD=1 AMD_LLVM=1 python3 test/test_linearizer.py test/opt/test_tensor_cores.py
# AMD=1 SHOULD_USE_TC=1 BFLOAT16=1 DEBUG=2 python3 extra/gemm/simple_matmul.py
- name: Run Tensor Core GEMM (AMD)
run: AMD=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 ATOL=2e-2 python3 extra/gemm/simple_matmul.py | tee am_matmul_amd.txt
run: AMD=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 ATOL=2e-2 python3 extra/gemm/simple_matmul.py
- name: Test AMD=1
run: DEBUG=2 AMD=1 python -m pytest -rA test/test_tiny.py
- name: Test DISK copy time
@@ -718,20 +618,12 @@ jobs:
AMD=1 GRAPH_ONE_KERNEL=1 PYTHONPATH=. NSZ=8192 python3 test/speed/external_test_copy_speed.py TestCopySpeed.testCopyDefaulttoCPUJit
AMD=1 GRAPH_ONE_KERNEL=1 PYTHONPATH=. NSZ=8192 python3 test/speed/external_test_copy_speed.py TestCopySpeed.testCopyCPUtoDefaultJit
- name: Run full CIFAR training w 1 GPU
run: time BENCHMARK_LOG=cifar AMD=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py | tee am_train_cifar_one_gpu.txt
run: time BENCHMARK_LOG=cifar AMD=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py
# - name: Run 10 MLPerf ResNet50 training steps (1 gpu)
# run: BENCHMARK_LOG=resnet_10steps AMD=1 MNISTMOCK=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee am_train_resnet_one_gpu.txt
# run: BENCHMARK_LOG=resnet_10steps AMD=1 MNISTMOCK=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py
- name: Run 10 MLPerf Bert training steps (1 gpu)
# TODO: remove BERT_LAYERS once scheduler is fast
run: BENCHMARK_LOG=bert_10steps AMD=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=66 GPUS=1 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py | tee am_train_bert_one_gpu.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (AM Driver)
path: |
am_matmul_amd.txt
am_train_cifar_one_gpu.txt
am_train_resnet_one_gpu.txt
am_train_bert_one_gpu.txt
run: BENCHMARK_LOG=bert_10steps AMD=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=66 GPUS=1 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
@@ -778,21 +670,13 @@ jobs:
NV=1 GRAPH_ONE_KERNEL=1 PYTHONPATH=. NSZ=8192 python3 test/speed/external_test_copy_speed.py TestCopySpeed.testCopyDefaulttoCPUJit
NV=1 GRAPH_ONE_KERNEL=1 PYTHONPATH=. NSZ=8192 python3 test/speed/external_test_copy_speed.py TestCopySpeed.testCopyCPUtoDefaultJit
- name: Test LLAMA-3
run: BENCHMARK_LOG=llama3_beam NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --size 8B --benchmark --temperature 0 | tee nv_llama3_beam.txt
run: BENCHMARK_LOG=llama3_beam NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --size 8B --benchmark --temperature 0
- name: Run full CIFAR training w 1 GPU
run: time BENCHMARK_LOG=cifar NV=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py | tee nv_train_cifar_one_gpu.txt
run: time BENCHMARK_LOG=cifar NV=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py
- name: Run 10 MLPerf ResNet50 training steps (1 gpu)
run: BENCHMARK_LOG=resnet_10steps NV=1 MNISTMOCK=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee nv_train_resnet_one_gpu.txt
run: BENCHMARK_LOG=resnet_10steps NV=1 MNISTMOCK=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py
- name: Run 10 MLPerf Bert training steps (1 gpu)
# TODO: remove BERT_LAYERS once scheduler is fast
run: BENCHMARK_LOG=bert_10steps NV=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=66 GPUS=1 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py | tee nv_train_bert_one_gpu.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (NV Driver)
path: |
nv_llama3_beam.txt
nv_train_cifar_one_gpu.txt
nv_train_resnet_one_gpu.txt
nv_train_bert_one_gpu.txt
run: BENCHMARK_LOG=bert_10steps NV=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=66 GPUS=1 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py