Update file paths (#1179)

This commit is contained in:
Jacky Lee
2023-07-07 18:41:58 -07:00
committed by GitHub
parent 0ad99038ef
commit e0c2ae8984
7 changed files with 26 additions and 26 deletions

View File

@@ -12,7 +12,7 @@ iou = _mask.iou
merge = _mask.merge merge = _mask.merge
frPyObjects = _mask.frPyObjects frPyObjects = _mask.frPyObjects
BASEDIR = pathlib.Path(__file__).parent.parent / "extra" / "datasets" / "COCO" BASEDIR = pathlib.Path(__file__).parent / "COCO"
BASEDIR.mkdir(exist_ok=True) BASEDIR.mkdir(exist_ok=True)
def create_dict(key_row, val_row, rows): return {row[key_row]:row[val_row] for row in rows} def create_dict(key_row, val_row, rows): return {row[key_row]:row[val_row] for row in rows}

View File

@@ -5,7 +5,7 @@ import numpy as np
from PIL import Image from PIL import Image
import functools, pathlib import functools, pathlib
BASEDIR = pathlib.Path(__file__).parent.parent / "extra/datasets/imagenet" BASEDIR = pathlib.Path(__file__).parent / "imagenet"
ci = json.load(open(BASEDIR / "imagenet_class_index.json")) ci = json.load(open(BASEDIR / "imagenet_class_index.json"))
cir = {v[0]: int(k) for k,v in ci.items()} cir = {v[0]: int(k) for k,v in ci.items()}

View File

@@ -14,38 +14,38 @@ def imagenet_extract(file, path, small=False):
def imagenet_prepare_val(): def imagenet_prepare_val():
# Read in the labels file # Read in the labels file
with open(Path(__file__).parent.parent / "extra/datasets/imagenet/imagenet_2012_validation_synset_labels.txt", 'r') as f: with open(Path(__file__).parent / "imagenet" / "imagenet_2012_validation_synset_labels.txt", 'r') as f:
labels = f.read().splitlines() labels = f.read().splitlines()
f.close() f.close()
# Get a list of images # Get a list of images
images = os.listdir(Path(__file__).parent.parent / "extra/datasets/imagenet/val") images = os.listdir(Path(__file__).parent / "imagenet" / "val")
images.sort() images.sort()
# Create folders and move files into those # Create folders and move files into those
for co,dir in enumerate(labels): for co,dir in enumerate(labels):
os.makedirs(Path(__file__).parent.parent / "extra/datasets/imagenet/val" / dir, exist_ok=True) os.makedirs(Path(__file__).parent / "imagenet" / "val" / dir, exist_ok=True)
os.replace(Path(__file__).parent.parent / "extra/datasets/imagenet/val" / images[co], Path(__file__).parent.parent / "extra/datasets/imagenet/val" / dir / images[co]) os.replace(Path(__file__).parent / "imagenet" / "val" / images[co], Path(__file__).parent / "imagenet" / "val" / dir / images[co])
os.remove(Path(__file__).parent.parent / "extra/datasets/imagenet/imagenet_2012_validation_synset_labels.txt") os.remove(Path(__file__).parent / "imagenet" / "imagenet_2012_validation_synset_labels.txt")
def imagenet_prepare_train(): def imagenet_prepare_train():
images = os.listdir(Path(__file__).parent.parent / "extra/datasets/imagenet/train") images = os.listdir(Path(__file__).parent / "imagenet" / "train")
for co,tarf in enumerate(images): for co,tarf in enumerate(images):
# for each tar file found. Create a folder with its name. Extract into that folder. Remove tar file # for each tar file found. Create a folder with its name. Extract into that folder. Remove tar file
if Path(Path(__file__).parent.parent / "extra/datasets/imagenet/train" / images[co]).is_file(): if Path(Path(__file__).parent / "imagenet" / "train" / images[co]).is_file():
images[co] = tarf[:-4] # remove .tar from extracted tar files images[co] = tarf[:-4] # remove .tar from extracted tar files
os.makedirs(Path(__file__).parent.parent / "extra/datasets/imagenet/train" / images[co], exist_ok=True) os.makedirs(Path(__file__).parent / "imagenet" / "train" / images[co], exist_ok=True)
imagenet_extract(Path(__file__).parent.parent / "extra/datasets/imagenet/train" / tarf, Path(__file__).parent.parent / "extra/datasets/imagenet/train" / images[co], small=True) imagenet_extract(Path(__file__).parent / "imagenet" / "train" / tarf, Path(__file__).parent/ "imagenet" / "train" / images[co], small=True)
os.remove(Path(__file__).parent.parent / "extra/datasets/imagenet/train" / tarf) os.remove(Path(__file__).parent / "imagenet" / "train" / tarf)
if __name__ == "__main__": if __name__ == "__main__":
os.makedirs(Path(__file__).parent.parent / "extra/datasets/imagenet", exist_ok=True) os.makedirs(Path(__file__).parent / "imagenet", exist_ok=True)
os.makedirs(Path(__file__).parent.parent / "extra/datasets/imagenet/val", exist_ok=True) os.makedirs(Path(__file__).parent / "imagenet" / "val", exist_ok=True)
os.makedirs(Path(__file__).parent.parent / "extra/datasets/imagenet/train", exist_ok=True) os.makedirs(Path(__file__).parent / "imagenet" / "train", exist_ok=True)
download_file("https://raw.githubusercontent.com/raghakot/keras-vis/master/resources/imagenet_class_index.json", Path(__file__).parent.parent / "extra/datasets/imagenet/imagenet_class_index.json") download_file("https://raw.githubusercontent.com/raghakot/keras-vis/master/resources/imagenet_class_index.json", Path(__file__).parent / "imagenet" / "imagenet_class_index.json")
download_file("https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_2012_validation_synset_labels.txt", Path(__file__).parent.parent / "extra/datasets/imagenet/imagenet_2012_validation_synset_labels.txt") download_file("https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_2012_validation_synset_labels.txt", Path(__file__).parent / "imagenet"/ "imagenet_2012_validation_synset_labels.txt")
download_file("https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar", Path(__file__).parent.parent / "extra/datasets/imagenet/ILSVRC2012_img_val.tar") # 7GB download_file("https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar", Path(__file__).parent / "imagenet" / "ILSVRC2012_img_val.tar") # 7GB
imagenet_extract(Path(__file__).parent.parent / "extra/datasets/imagenet/ILSVRC2012_img_val.tar", Path(__file__).parent.parent / "extra/datasets/imagenet/val") imagenet_extract(Path(__file__).parent / "imagenet" / "ILSVRC2012_img_val.tar", Path(__file__).parent / "imagenet" / "val")
imagenet_prepare_val() imagenet_prepare_val()
if os.getenv('IMGNET_TRAIN', None) is not None: if os.getenv('IMGNET_TRAIN', None) is not None:
download_file("https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar", Path(__file__).parent.parent / "extra/datasets/imagenet/ILSVRC2012_img_train.tar") #138GB! download_file("https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar", Path(__file__).parent / "imagenet" / "ILSVRC2012_img_train.tar") #138GB!
imagenet_extract(Path(__file__).parent.parent / "extra/datasets/imagenet/ILSVRC2012_img_train.tar", Path(__file__).parent.parent / "extra/datasets/imagenet/train") imagenet_extract(Path(__file__).parent / "imagenet" / "ILSVRC2012_img_train.tar", Path(__file__).parent / "imagenet" / "train")
imagenet_prepare_train() imagenet_prepare_train()

View File

@@ -9,7 +9,7 @@ import torch
import torch.nn.functional as F import torch.nn.functional as F
from tinygrad.tensor import Tensor from tinygrad.tensor import Tensor
BASEDIR = Path(__file__).parent.parent.resolve() / "extra" / "datasets" / "kits19" / "data" BASEDIR = Path(__file__).parent / "kits19" / "data"
""" """
To download the dataset: To download the dataset:

View File

@@ -15,7 +15,7 @@ for file in $(find * | grep flac); do ffmpeg -i $file -ar 16k "$(dirname $file)/
Then this [file](https://github.com/mlcommons/inference/blob/master/speech_recognition/rnnt/dev-clean-wav.json) has to also be put in `extra/datasets/librispeech`. Then this [file](https://github.com/mlcommons/inference/blob/master/speech_recognition/rnnt/dev-clean-wav.json) has to also be put in `extra/datasets/librispeech`.
""" """
BASEDIR = pathlib.Path(__file__).parent.parent / "extra/datasets/librispeech" BASEDIR = pathlib.Path(__file__).parent / "librispeech"
with open(BASEDIR / "dev-clean-wav.json") as f: with open(BASEDIR / "dev-clean-wav.json") as f:
ci = json.load(f) ci = json.load(f)

View File

@@ -11,7 +11,7 @@ from tqdm import tqdm
import pandas as pd import pandas as pd
import concurrent.futures import concurrent.futures
BASEDIR = pathlib.Path(__file__).parent.parent / "extra/datasets/open-images-v6-mlperf" BASEDIR = pathlib.Path(__file__).parent / "open-images-v6-mlperf"
BUCKET_NAME = "open-images-dataset" BUCKET_NAME = "open-images-dataset"
BBOX_ANNOTATIONS_URL = "https://storage.googleapis.com/openimages/v5/validation-annotations-bbox.csv" BBOX_ANNOTATIONS_URL = "https://storage.googleapis.com/openimages/v5/validation-annotations-bbox.csv"
MAP_CLASSES_URL = "https://storage.googleapis.com/openimages/v5/class-descriptions-boxable.csv" MAP_CLASSES_URL = "https://storage.googleapis.com/openimages/v5/class-descriptions-boxable.csv"

View File

@@ -5,7 +5,7 @@ from transformers import BertTokenizer
import numpy as np import numpy as np
from extra.utils import download_file from extra.utils import download_file
BASEDIR = Path(__file__).parent.parent / "extra/datasets/squad" BASEDIR = Path(__file__).parent / "squad"
def init_dataset(): def init_dataset():
os.makedirs(BASEDIR, exist_ok=True) os.makedirs(BASEDIR, exist_ok=True)
download_file("https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json", BASEDIR / "dev-v1.1.json") download_file("https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json", BASEDIR / "dev-v1.1.json")
@@ -141,7 +141,7 @@ def iterate(tokenizer, start=0):
yield features, example yield features, example
if __name__ == "__main__": if __name__ == "__main__":
tokenizer = BertTokenizer(str(Path(__file__).parent.parent / "weights/bert_vocab.txt")) tokenizer = BertTokenizer(str(Path(__file__).parent.parent.parent / "weights" / "bert_vocab.txt"))
X, Y = next(iterate(tokenizer)) X, Y = next(iterate(tokenizer))
print(" ".join(X[0]["tokens"])) print(" ".join(X[0]["tokens"]))