mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-02-13 16:15:19 -05:00
nv driver (#4044)
* start * fix err 93 * gpu * ioctl mappings * alloc like cuda * semaphores * wait for semaphores value * start ops_nv * very simple kernels work * init several gpus * qmd dumper * dirty, but most of kernels work * always all test_ops * progress, more tests, stable * test_ops passes, gpt2 works but wth big fifo, wrap of fifo doesn't work, i think it's something coherency releated * need better sync * fix sync * alloc2 * all tests pass! * cleanup 1 * cleanup * multigpu, simple transfer * fix sync * correct init * nv_gpu autogen + sync bug fix * clean extra/nv_gpu_driver * p2p * clean up * remove old gen * small fixes * cleanup * cleanup 2 * small fixes * bigger queue size * cleanups * wait * fixed signals for devs * fix hang + parallel beam * small fixes * detect when local memory is big in kernel * correct assert * small fixes * correct tls size est * one va space * less lines * shorter * save 2 lines * save some lines * remove type ignores --------- Co-authored-by: George Hotz <72895+geohot@users.noreply.github.com>
This commit is contained in:
33328
tinygrad/runtime/autogen/nv_gpu.py
Normal file
33328
tinygrad/runtime/autogen/nv_gpu.py
Normal file
File diff suppressed because it is too large
Load Diff
541
tinygrad/runtime/ops_nv.py
Normal file
541
tinygrad/runtime/ops_nv.py
Normal file
@@ -0,0 +1,541 @@
|
||||
from __future__ import annotations
|
||||
import os, ctypes, pathlib, re, fcntl, functools, mmap, struct, tempfile, hashlib, subprocess, time
|
||||
from typing import Tuple, List, Any
|
||||
from tinygrad.device import Compiled, LRUAllocator, Compiler, BufferOptions, CompilerOptions
|
||||
from tinygrad.helpers import getenv, from_mv, init_c_struct_t, to_mv, round_up, to_char_p_p, DEBUG
|
||||
from tinygrad.renderer.cstyle import CUDARenderer
|
||||
from tinygrad.runtime.ops_cuda import check as cuda_check, _get_bytes
|
||||
import tinygrad.runtime.autogen.cuda as cuda
|
||||
import tinygrad.runtime.autogen.nv_gpu as nv_gpu
|
||||
if getenv("IOCTL"): import extra.nv_gpu_driver.nv_ioctl # noqa: F401
|
||||
|
||||
libc = ctypes.CDLL("libc.so.6")
|
||||
libc.memset.argtypes = [ctypes.c_void_p, ctypes.c_char, ctypes.c_int]
|
||||
libc.mmap.argtypes = [ctypes.c_void_p, ctypes.c_size_t, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_long]
|
||||
libc.mmap.restype = ctypes.c_void_p
|
||||
libc.munmap.argtypes = [ctypes.c_void_p, ctypes.c_size_t]
|
||||
libc.munmap.restype = ctypes.c_int
|
||||
|
||||
QMD_SIZE = (8 << 8)
|
||||
|
||||
def nv_iowr(fd, nr, args):
|
||||
ret = fcntl.ioctl(fd, (3 << 30) | (ctypes.sizeof(args) & 0x1FFF) << 16 | (ord('F') & 0xFF) << 8 | (nr & 0xFF), args)
|
||||
if ret != 0: raise RuntimeError(f"ioctl returned {ret}")
|
||||
|
||||
def rm_alloc(fd, clss, root, parant, params):
|
||||
made = nv_gpu.NVOS21_PARAMETERS(hRoot=root, hObjectParent=parant, hClass=clss,
|
||||
pAllocParms=ctypes.cast(ctypes.byref(params), ctypes.POINTER(None)) if params is not None else None) # type: ignore
|
||||
nv_iowr(fd, nv_gpu.NV_ESC_RM_ALLOC, made)
|
||||
if made.status != 0: raise RuntimeError(f"rm_alloc returned {made.status}")
|
||||
return made
|
||||
|
||||
def rm_control(fd, cmd, client, obj, params):
|
||||
made = nv_gpu.NVOS54_PARAMETERS(hClient=client, hObject=obj, cmd=cmd, paramsSize=ctypes.sizeof(params),
|
||||
params=ctypes.cast(ctypes.byref(params), ctypes.POINTER(None)) if params is not None else None) # type: ignore
|
||||
nv_iowr(fd, nv_gpu.NV_ESC_RM_CONTROL, made)
|
||||
if made.status != 0: raise RuntimeError(f"rm_control returned {made.status}")
|
||||
return made
|
||||
|
||||
def uvm_ioctl(cmd, sttyp, fd, **kwargs):
|
||||
ret = fcntl.ioctl(fd, cmd, made:=sttyp(**kwargs))
|
||||
if ret != 0: raise RuntimeError(f"uvm_ioctl returned {ret}")
|
||||
if made.rmStatus != 0: raise RuntimeError(f"uvm_ioctl struct returned {made.rmStatus}")
|
||||
return made
|
||||
|
||||
def make_uvm_type():
|
||||
fxns = {name.replace("UVM_", "").lower():
|
||||
functools.partial(uvm_ioctl, dt, getattr(nv_gpu, name+"_PARAMS"))
|
||||
for name,dt in nv_gpu.__dict__.items() if name.startswith("UVM_") and nv_gpu.__dict__.get(name+"_PARAMS")}
|
||||
return type("NVUVM", (object, ), fxns)
|
||||
uvm = make_uvm_type()
|
||||
|
||||
def make_qmd_struct_type():
|
||||
fields = []
|
||||
bits = [(name,dt) for name,dt in nv_gpu.__dict__.items() if name.startswith("NVC6C0_QMDV03_00") and isinstance(dt, tuple)]
|
||||
bits += [(name+f"_{i}",dt(i)) for name,dt in nv_gpu.__dict__.items() for i in range(8) if name.startswith("NVC6C0_QMDV03_00") and callable(dt)]
|
||||
bits = sorted(bits, key=lambda x: x[1][1])
|
||||
for i,(name, data) in enumerate(bits):
|
||||
if i > 0 and (gap:=(data[1] - bits[i-1][1][0] - 1)) != 0: fields.append((f"_reserved{i}", ctypes.c_uint32, gap))
|
||||
fields.append((name.replace("NVC6C0_QMDV03_00_", "").lower(), ctypes.c_uint32, data[0]-data[1]+1))
|
||||
return init_c_struct_t(tuple(fields))
|
||||
qmd_struct_t = make_qmd_struct_type()
|
||||
assert ctypes.sizeof(qmd_struct_t) == 0x40 * 4
|
||||
|
||||
def nvmethod(subc, mthd, size, typ=2): return (typ << 28) | (size << 16) | (subc << 13) | (mthd >> 2)
|
||||
def nvdata64(data): return (data >> 32, data & 0xFFFFFFFF)
|
||||
def nvdata64_le(data): return (data & 0xFFFFFFFF, data >> 32)
|
||||
|
||||
class NVCompiler(Compiler):
|
||||
compiler_opts = CompilerOptions("NV", global_max=[65535, 65535, 2147483647], local_max=[64, 1024, 1024], shared_max=49152)
|
||||
def __init__(self, arch:str):
|
||||
self.arch = arch
|
||||
NVCompiler.compiler_opts = NVCompiler.compiler_opts._replace(has_tensor_cores=int(arch[3:]) >= 80)
|
||||
cuda_check(cuda.nvrtcVersion((nvrtcMajor := ctypes.c_int()), (nvrtcMinor := ctypes.c_int())))
|
||||
self.compile_options = [f'--gpu-architecture={arch}', "-I/usr/local/cuda/include", "-I/usr/include", "-I/opt/cuda/include/"]
|
||||
if (nvrtcMajor.value, nvrtcMinor.value) >= (12, 4): self.compile_options.append("--minimal")
|
||||
super().__init__(f"compile_nv_{self.arch}")
|
||||
def render(self, name:str, uops) -> str: return CUDARenderer(name, uops)
|
||||
def compile(self, src:str) -> bytes:
|
||||
cuda_check(cuda.nvrtcCreateProgram(ctypes.byref(prog := cuda.nvrtcProgram()), src.encode(), "<null>".encode(), 0, None, None))
|
||||
status = cuda.nvrtcCompileProgram(prog, len(self.compile_options), to_char_p_p([o.encode() for o in self.compile_options]))
|
||||
|
||||
if status != 0:
|
||||
raise RuntimeError(f"compile failed: {_get_bytes(prog, cuda.nvrtcGetProgramLog, cuda.nvrtcGetProgramLogSize, cuda_check).decode()}")
|
||||
return _get_bytes(prog, cuda.nvrtcGetCUBIN, cuda.nvrtcGetCUBINSize, cuda_check)
|
||||
|
||||
class HWComputeQueue:
|
||||
def __init__(self): self.q = []
|
||||
def copy_from_cpu(self, gpuaddr, data):
|
||||
self.q += [nvmethod(1, nv_gpu.NVC6C0_OFFSET_OUT_UPPER, 2), *nvdata64(gpuaddr)]
|
||||
self.q += [nvmethod(1, nv_gpu.NVC6C0_LINE_LENGTH_IN, 2), len(data)*4, 0x1]
|
||||
self.q += [nvmethod(1, nv_gpu.NVC6C0_LAUNCH_DMA, 1), 0x41]
|
||||
self.q += [nvmethod(1, nv_gpu.NVC6C0_LOAD_INLINE_DATA, len(data), typ=6)] + [x for x in data]
|
||||
return self
|
||||
|
||||
def exec(self, prg, kernargs, global_size:Tuple[int,int,int]=(1,1,1), local_size:Tuple[int,int,int]=(1,1,1), completion_signal=None):
|
||||
prg.qmd.cta_raster_width, prg.qmd.cta_raster_height, prg.qmd.cta_raster_depth = global_size
|
||||
prg.qmd.cta_thread_dimension0, prg.qmd.cta_thread_dimension1, prg.qmd.cta_thread_dimension2 = local_size
|
||||
prg.qmd.constant_buffer_addr_lower_0 = (kernargs + QMD_SIZE) & 0xffffffff
|
||||
prg.qmd.constant_buffer_addr_upper_0 = (kernargs + QMD_SIZE) >> 32
|
||||
self.q += [nvmethod(1, nv_gpu.NVC6C0_INVALIDATE_SHADER_CACHES_NO_WFI, 1), (1 << 12) | (1 << 4) | (1 << 0)]
|
||||
self.q += [nvmethod(1, nv_gpu.NVC6C0_SET_INLINE_QMD_ADDRESS_A, 0x42), *nvdata64(kernargs >> 8)]
|
||||
self.q += [x for x in to_mv(ctypes.addressof(prg.qmd), ctypes.sizeof(prg.qmd)).cast("I")]
|
||||
|
||||
if completion_signal is not None: self.signal(completion_signal)
|
||||
return self
|
||||
|
||||
def wait(self, signal, value=0):
|
||||
self.q += [nvmethod(0, nv_gpu.NVC56F_SEM_ADDR_LO, 5), *nvdata64_le(ctypes.addressof(from_mv(signal).contents)), *nvdata64_le(value),
|
||||
(3 << 0) | (1 << 12) | (1 << 24)] # ACQUIRE | ACQUIRE_SWITCH_TSG | PAYLOAD_SIZE_64BIT
|
||||
return self
|
||||
|
||||
def signal(self, signal, value=0, timestamp=False):
|
||||
self.q += [nvmethod(0, nv_gpu.NVC56F_SEM_ADDR_LO, 5), *nvdata64_le(ctypes.addressof(from_mv(signal).contents)), *nvdata64_le(value),
|
||||
(1 << 0) | (1 << 20) | (1 << 24) | ((1 << 25) if timestamp else 0)] # RELEASE | RELEASE_WFI | PAYLOAD_SIZE_64BIT | RELEASE_TIMESTAMP
|
||||
self.q += [nvmethod(0, nv_gpu.NVC56F_NON_STALL_INTERRUPT, 1), 0x0]
|
||||
return self
|
||||
|
||||
def submit(self, dev:NVDevice):
|
||||
assert len(self.q) < (1 << 21)
|
||||
self.signal(dev.compute_progress_signal, dev.compute_put_value + 1)
|
||||
for i,packet in enumerate(self.q): dev.cmdq[dev.cmdq_wptr//4 + i] = packet
|
||||
fifo_entry = dev.compute_put_value % dev.compute_gpfifo_entries
|
||||
dev.compute_gpu_ring[fifo_entry] = ((dev.cmdq_page.base+dev.cmdq_wptr)//4 << 2) | (len(self.q) << 42) | (1 << 41)
|
||||
dev.compute_gpu_ring_controls.GPPut = (dev.compute_put_value + 1) % dev.compute_gpfifo_entries
|
||||
dev.compute_put_value += 1
|
||||
dev.gpu_mmio[0x90 // 4] = dev.compute_gpfifo_token
|
||||
dev.cmdq_wptr += len(self.q) * 4
|
||||
|
||||
class HWCopyQueue:
|
||||
def __init__(self): self.q = []
|
||||
|
||||
def copy(self, dest, src, copy_size):
|
||||
self.q += [nvmethod(4, nv_gpu.NVC6B5_OFFSET_IN_UPPER, 4), *nvdata64(src), *nvdata64(dest)]
|
||||
self.q += [nvmethod(4, nv_gpu.NVC6B5_LINE_LENGTH_IN, 1), copy_size]
|
||||
self.q += [nvmethod(4, nv_gpu.NVC6B5_LAUNCH_DMA, 1), 0x182] # TRANSFER_TYPE_NON_PIPELINED | DST_MEMORY_LAYOUT_PITCH | SRC_MEMORY_LAYOUT_PITCH
|
||||
return self
|
||||
|
||||
def wait(self, signal, value=0):
|
||||
self.q += [nvmethod(0, nv_gpu.NVC56F_SEM_ADDR_LO, 5), *nvdata64_le(ctypes.addressof(from_mv(signal).contents)), value, 0x0,
|
||||
(3 << 0) | (1 << 12) | (1 << 24)] # ACQUIRE | ACQUIRE_SWITCH_TSG | PAYLOAD_SIZE_64BIT
|
||||
return self
|
||||
|
||||
def signal(self, signal, value=0, timestamp=False):
|
||||
self.q += [nvmethod(0, nv_gpu.NVC56F_SEM_ADDR_LO, 5), *nvdata64_le(ctypes.addressof(from_mv(signal).contents)), *nvdata64_le(value),
|
||||
(1 << 0) | (1 << 20) | (1 << 24) | ((1 << 25) if timestamp else 0)] # RELEASE | RELEASE_WFI | PAYLOAD_SIZE_64BIT | RELEASE_TIMESTAMP
|
||||
self.q += [nvmethod(0, nv_gpu.NVC56F_NON_STALL_INTERRUPT, 1), 0x0]
|
||||
return self
|
||||
|
||||
def submit(self, dev:NVDevice):
|
||||
self.signal(dev.dma_progress_signal, dev.dma_put_value + 1)
|
||||
for i,packet in enumerate(self.q): dev.cmdq[dev.cmdq_wptr//4 + i] = packet
|
||||
fifo_entry = dev.dma_put_value % dev.dma_gpfifo_entries
|
||||
dev.dma_gpu_ring[fifo_entry] = ((dev.cmdq_page.base+dev.cmdq_wptr)//4 << 2) | (len(self.q) << 42)
|
||||
dev.dma_gpu_ring_controls.GPPut = (dev.dma_put_value + 1) % dev.dma_gpfifo_entries
|
||||
dev.dma_put_value += 1
|
||||
dev.gpu_mmio[0x90 // 4] = dev.dma_gpfifo_token
|
||||
dev.cmdq_wptr += len(self.q) * 4
|
||||
|
||||
SHT_PROGBITS, SHT_NOBITS, SHF_ALLOC, SHF_EXECINSTR = 0x1, 0x8, 0x2, 0x4
|
||||
class NVProgram:
|
||||
def __init__(self, device:NVDevice, name:str, lib:bytes):
|
||||
self.device, self.name, self.lib = device, name, lib
|
||||
if DEBUG >= 6:
|
||||
try:
|
||||
fn = (pathlib.Path(tempfile.gettempdir()) / f"tinycuda_{hashlib.md5(lib).hexdigest()}").as_posix()
|
||||
with open(fn + ".cubin", "wb") as f: f.write(lib)
|
||||
print(subprocess.check_output(["nvdisasm", fn+".cubin"]).decode('utf-8'))
|
||||
except Exception as e: print("failed to disasm cubin", str(e))
|
||||
|
||||
_phoff, _shoff, _flags, _ehsize, _phentsize, _phnum, _shentsize, _shnum, _shstrndx = struct.unpack_from("<QQIHHHHHH", self.lib, 0x20)
|
||||
sections = [struct.unpack_from("<IIQQQQIIQ", self.lib, _shoff + i * _shentsize) for i in range(_shnum)]
|
||||
shstrtab = memoryview(bytearray(self.lib[sections[_shstrndx][4]:sections[_shstrndx][4]+sections[_shstrndx][5]]))
|
||||
|
||||
self.shmem_usage = 0
|
||||
constant_buffers_data = {}
|
||||
for sh_name, sh_type, sh_flags, _, sh_offset, sh_size, _, sh_info, _ in sections:
|
||||
section_name = shstrtab[sh_name:].tobytes().split(b'\0', 1)[0].decode('utf-8')
|
||||
if sh_type == SHT_NOBITS and sh_flags & SHF_ALLOC: self.shmem_usage = sh_size
|
||||
elif sh_type == SHT_PROGBITS and sh_flags & SHF_ALLOC and sh_flags & SHF_EXECINSTR:
|
||||
self.program = memoryview(bytearray(self.lib[sh_offset:sh_offset+sh_size])).cast("I")
|
||||
self.registers_usage = sh_info >> 24
|
||||
if match := re.match(r'\.nv\.constant(\d+)', section_name):
|
||||
constant_buffers_data[int(match.group(1))] = memoryview(bytearray(self.lib[sh_offset:sh_offset+sh_size])).cast("I")
|
||||
if section_name == ".nv.info":
|
||||
section_data = memoryview(bytearray(self.lib[sh_offset:sh_offset+sh_size])).cast("I")
|
||||
for i in range(sh_size // 12):
|
||||
if section_data[i * 3 + 0] & 0xffff == 0x1204 and section_data[i * 3 + 2] + 0x240 > self.device.slm_per_thread:
|
||||
raise RuntimeError("too high local memory")
|
||||
|
||||
# Load program and constant buffers (if any)
|
||||
self.lib_sz = round_up(round_up(self.program.nbytes, 128) + sum([round_up(x.nbytes, 128) for i,x in constant_buffers_data.items()]), 0x1000)
|
||||
self.lib_gpu = self.device.allocator.alloc(self.lib_sz)
|
||||
for st in range(0, len(self.program), 4096):
|
||||
HWComputeQueue().copy_from_cpu(self.lib_gpu.base+st*4, self.program[st:st+4096]).submit(self.device)
|
||||
|
||||
self.constbuffer_0 = [0] * 88
|
||||
self.constbuffer_0[6:12] = [*nvdata64_le(self.device.shared_mem_window), *nvdata64_le(self.device.local_mem_window), *nvdata64_le(0xfffdc0)]
|
||||
|
||||
smem_config = min(shmem_conf * 1024 for shmem_conf in [8, 16, 32, 64, 96] if shmem_conf * 1024 >= self.shmem_usage) // 4096 + 1
|
||||
self.qmd = qmd_struct_t(qmd_group_id=0x3f, sm_global_caching_enable=1, invalidate_texture_header_cache=1, invalidate_texture_sampler_cache=1,
|
||||
invalidate_texture_data_cache=1, invalidate_shader_data_cache=1, api_visible_call_limit=1, sampler_index=1,
|
||||
cwd_membar_type=nv_gpu.NVC6C0_QMDV03_00_CWD_MEMBAR_TYPE_L1_SYSMEMBAR, qmd_major_version=3,
|
||||
shared_memory_size=max(0x400, round_up(self.shmem_usage, 0x100)), min_sm_config_shared_mem_size=smem_config,
|
||||
max_sm_config_shared_mem_size=0x1a, register_count_v=self.registers_usage, target_sm_config_shared_mem_size=smem_config,
|
||||
barrier_count=1, shader_local_memory_high_size=self.device.slm_per_thread, program_prefetch_size=0x10, sass_version=0x89,
|
||||
program_address_lower=self.lib_gpu.base&0xffffffff, program_address_upper=self.lib_gpu.base>>32,
|
||||
program_prefetch_addr_lower_shifted=self.lib_gpu.base>>8, program_prefetch_addr_upper_shifted=self.lib_gpu.base>>40,
|
||||
constant_buffer_size_shifted4_0=0x190, constant_buffer_valid_0=1, constant_buffer_invalidate_0=1)
|
||||
|
||||
# constant buffer 0 is filled for each program, no need to copy it from elf (it's just zeroes)
|
||||
if 0 in constant_buffers_data: constant_buffers_data.pop(0)
|
||||
|
||||
off = round_up(self.program.nbytes, 128)
|
||||
for i,data in constant_buffers_data.items():
|
||||
self.qmd.__setattr__(f'constant_buffer_addr_upper_{i}', (self.lib_gpu.base + off) >> 32)
|
||||
self.qmd.__setattr__(f'constant_buffer_addr_lower_{i}', (self.lib_gpu.base + off) & 0xffffffff)
|
||||
self.qmd.__setattr__(f'constant_buffer_size_shifted4_{i}', data.nbytes)
|
||||
self.qmd.__setattr__(f'constant_buffer_valid_{i}', 1)
|
||||
|
||||
HWComputeQueue().copy_from_cpu(self.lib_gpu.base + off, data).submit(self.device)
|
||||
off += round_up(data.nbytes, 128)
|
||||
self.device.synchronize()
|
||||
|
||||
def __del__(self):
|
||||
if hasattr(self, 'lib_gpu'): self.device.allocator.free(self.lib_gpu, self.lib_sz)
|
||||
|
||||
def __call__(self, *args, global_size:Tuple[int,int,int]=(1,1,1), local_size:Tuple[int,int,int]=(1,1,1), vals:Tuple[int, ...]=(), wait=False):
|
||||
kernargs_size = round_up(QMD_SIZE + 0x160 + len(args) * 8 + len(vals) * 4, 1 << 8)
|
||||
if self.device.kernargs_ptr >= (self.device.kernargs_page.base + self.device.kernargs_page.length - kernargs_size):
|
||||
self.device.kernargs_ptr = self.device.kernargs_page.base
|
||||
|
||||
kernargs = [arg_half for arg in args for arg_half in nvdata64_le(arg.base)] + [val for val in vals]
|
||||
kernargs_ptr = self.device.kernargs_ptr
|
||||
self.device.kernargs_ptr += kernargs_size
|
||||
|
||||
if wait: st, en = self.device._get_signal(), self.device._get_signal()
|
||||
queue = HWComputeQueue()
|
||||
queue.wait(self.device.dma_progress_signal, self.device.dma_put_value)
|
||||
queue.wait(self.device.compute_progress_signal, self.device.compute_put_value)
|
||||
if wait: queue.signal(st, timestamp=True)
|
||||
queue.copy_from_cpu(kernargs_ptr + QMD_SIZE, self.constbuffer_0 + kernargs)
|
||||
queue.exec(self, kernargs_ptr, global_size, local_size)
|
||||
if wait: queue.signal(en, timestamp=True)
|
||||
queue.submit(self.device)
|
||||
if wait:
|
||||
self.device._wait_signal(self.device.compute_progress_signal, self.device.compute_put_value)
|
||||
return (en[1]-st[1]) / 1e9
|
||||
|
||||
class NVAllocator(LRUAllocator):
|
||||
def __init__(self, device:NVDevice):
|
||||
self.device = device
|
||||
super().__init__()
|
||||
|
||||
def _alloc(self, size:int, options:BufferOptions):
|
||||
if options.host: return self.device._gpu_host_alloc(size)
|
||||
else: return self.device._gpu_alloc(size, map_to_all_gpus=True)
|
||||
|
||||
def _free(self, gpumem, options:BufferOptions):
|
||||
NVDevice.synchronize_system()
|
||||
if options.host: self.device._gpu_host_free(gpumem)
|
||||
else: self.device._gpu_free(gpumem)
|
||||
|
||||
def copyin(self, dest, src: memoryview):
|
||||
host_mem = self.alloc(src.nbytes, BufferOptions(host=True))
|
||||
self.device.pending_copyin.append((host_mem, src.nbytes, BufferOptions(host=True)))
|
||||
ctypes.memmove(host_mem.base, from_mv(src), src.nbytes)
|
||||
HWCopyQueue().copy(dest.base, host_mem.base, src.nbytes).submit(self.device)
|
||||
self.device.synchronize()
|
||||
|
||||
def copyout(self, dest:memoryview, src):
|
||||
NVDevice.synchronize_system()
|
||||
host_mem = self.alloc(dest.nbytes, BufferOptions(host=True))
|
||||
self.device.pending_copyin.append((host_mem, dest.nbytes, BufferOptions(host=True)))
|
||||
HWCopyQueue().copy(host_mem.base, src.base, dest.nbytes).submit(self.device)
|
||||
self.device.synchronize()
|
||||
ctypes.memmove(from_mv(dest), host_mem.base, dest.nbytes)
|
||||
|
||||
def transfer(self, dest, src, sz:int, src_dev=None, dest_dev=None):
|
||||
queue = HWCopyQueue()
|
||||
queue.wait(src_dev.dma_progress_signal, src_dev.dma_put_value)
|
||||
queue.wait(src_dev.compute_progress_signal, src_dev.compute_put_value)
|
||||
queue.wait(dest_dev.dma_progress_signal, dest_dev.dma_put_value)
|
||||
queue.wait(dest_dev.compute_progress_signal, dest_dev.compute_put_value)
|
||||
queue.copy(dest.base, src.base, sz).submit(src_dev)
|
||||
HWCopyQueue().wait(src_dev.dma_progress_signal, src_dev.dma_put_value).submit(dest_dev)
|
||||
dest_dev.synchronize()
|
||||
|
||||
MAP_FIXED, MAP_NORESERVE = 0x10, 0x400
|
||||
class NVDevice(Compiled):
|
||||
root = None
|
||||
fd_ctl: int = -1
|
||||
fd_uvm: int = -1
|
||||
gpus_info = None
|
||||
signals_page:Any = None
|
||||
signal_number: int = 32
|
||||
uvm_vaddr: int = 0x1000000000
|
||||
host_object_enumerator: int = 0x1000
|
||||
devices: List[NVDevice] = []
|
||||
|
||||
def _new_gpu_fd(self):
|
||||
fd_dev = os.open(f"/dev/nvidia{self.device_id}", os.O_RDWR | os.O_CLOEXEC)
|
||||
nv_iowr(fd_dev, nv_gpu.NV_ESC_REGISTER_FD, nv_gpu.nv_ioctl_register_fd_t(ctl_fd=self.fd_ctl))
|
||||
return fd_dev
|
||||
|
||||
def _gpu_map_to_cpu(self, memory_handle, size, target=None, flags=0, system=False):
|
||||
fd_dev = self._new_gpu_fd() if not system else os.open("/dev/nvidiactl", os.O_RDWR | os.O_CLOEXEC)
|
||||
made = nv_gpu.nv_ioctl_nvos33_parameters_with_fd(fd=fd_dev,
|
||||
params=nv_gpu.NVOS33_PARAMETERS(hClient=self.root, hDevice=self.device, hMemory=memory_handle, length=size, flags=flags))
|
||||
nv_iowr(self.fd_ctl, nv_gpu.NV_ESC_RM_MAP_MEMORY, made)
|
||||
if made.params.status != 0: raise RuntimeError(f"_gpu_map_to_cpu returned {made.params.status}")
|
||||
return libc.mmap(target, size, mmap.PROT_READ|mmap.PROT_WRITE, mmap.MAP_SHARED | (MAP_FIXED if target is not None else 0), fd_dev, 0)
|
||||
|
||||
def _gpu_alloc(self, size:int, contig=False, huge_page=False, va_addr=None, map_to_cpu=False, map_to_all_gpus=False, map_flags=0):
|
||||
size = round_up(size, align:=((4 << 10) if huge_page else (2 << 20))) # TODO: need hugepage option, any speedup?
|
||||
alloc_params = nv_gpu.NV_MEMORY_ALLOCATION_PARAMS(owner=self.root, alignment=align, offset=0, limit=size-1, format=6, size=size,
|
||||
attr=(((nv_gpu.NVOS32_ATTR_PAGE_SIZE_HUGE << 23) if huge_page else 0) |
|
||||
((nv_gpu.NVOS32_ATTR_PHYSICALITY_CONTIGUOUS if contig else nv_gpu.NVOS32_ATTR_PHYSICALITY_ALLOW_NONCONTIGUOUS) << 27)),
|
||||
attr2=((nv_gpu.NVOS32_ATTR2_ZBC_PREFER_NO_ZBC << 0) | (nv_gpu.NVOS32_ATTR2_GPU_CACHEABLE_YES << 2) |
|
||||
((nv_gpu.NVOS32_ATTR2_PAGE_SIZE_HUGE_2MB << 20) if huge_page else 0)),
|
||||
flags=(nv_gpu.NVOS32_ALLOC_FLAGS_ALIGNMENT_FORCE | nv_gpu.NVOS32_ALLOC_FLAGS_PERSISTENT_VIDMEM | nv_gpu.NVOS32_ALLOC_FLAGS_MAP_NOT_REQUIRED |
|
||||
nv_gpu.NVOS32_ALLOC_FLAGS_IGNORE_BANK_PLACEMENT | nv_gpu.NVOS32_ALLOC_FLAGS_MEMORY_HANDLE_PROVIDED))
|
||||
mem_handle = rm_alloc(self.fd_ctl, nv_gpu.NV1_MEMORY_USER, self.root, self.device, alloc_params).hObjectNew
|
||||
|
||||
if va_addr is None: va_addr = self._alloc_gpu_vaddr(size, alignment=align)
|
||||
if map_to_cpu: va_addr = self._gpu_map_to_cpu(mem_handle, size, target=va_addr, flags=map_flags)
|
||||
|
||||
handle = self._gpu_uvm_map(va_addr, size, mem_handle)
|
||||
if map_to_all_gpus:
|
||||
for dev in NVDevice.devices:
|
||||
if dev != self: dev._gpu_uvm_map(handle.base, handle.length, handle.hMemory, create_range=False)
|
||||
return handle
|
||||
|
||||
def _gpu_system_alloc(self, size:int, va_addr=None, map_to_cpu=False, map_flags=0):
|
||||
alloc_params = nv_gpu.NV_MEMORY_ALLOCATION_PARAMS(owner=self.root, type=13,
|
||||
attr=(nv_gpu.NVOS32_ATTR_PHYSICALITY_ALLOW_NONCONTIGUOUS << 27) | (nv_gpu.NVOS32_ATTR_LOCATION_PCI << 25),
|
||||
attr2=(nv_gpu.NVOS32_ATTR2_ZBC_PREFER_NO_ZBC << 0) | (nv_gpu.NVOS32_ATTR2_GPU_CACHEABLE_NO << 2),
|
||||
flags=(nv_gpu.NVOS32_ALLOC_FLAGS_IGNORE_BANK_PLACEMENT | nv_gpu.NVOS32_ALLOC_FLAGS_MEMORY_HANDLE_PROVIDED |
|
||||
nv_gpu.NVOS32_ALLOC_FLAGS_MAP_NOT_REQUIRED), format=6, size=size, alignment=(4<<10), offset=0, limit=size-1)
|
||||
mem_handle = rm_alloc(self.fd_ctl, nv_gpu.NV1_MEMORY_SYSTEM, self.root, self.device, alloc_params).hObjectNew
|
||||
|
||||
if va_addr is None: va_addr = self._alloc_gpu_vaddr(size)
|
||||
if map_to_cpu: va_addr = self._gpu_map_to_cpu(mem_handle, size, target=va_addr, flags=map_flags, system=True)
|
||||
|
||||
return self._gpu_uvm_map(va_addr, size, mem_handle)
|
||||
|
||||
def _gpu_host_alloc(self, size):
|
||||
va_base = self._alloc_gpu_vaddr(sz:=round_up(size, 4 << 10))
|
||||
libc.mmap(va_base, sz, mmap.PROT_READ|mmap.PROT_WRITE, MAP_FIXED|mmap.MAP_SHARED|mmap.MAP_ANONYMOUS, -1, 0)
|
||||
return self._map_to_gpu(va_base, sz)
|
||||
|
||||
def _gpu_free(self, mem):
|
||||
made = nv_gpu.NVOS00_PARAMETERS(hRoot=self.root, hObjectParent=self.device, hObjectOld=mem.hMemory)
|
||||
nv_iowr(self.fd_ctl, nv_gpu.NV_ESC_RM_FREE, made)
|
||||
if made.status != 0: raise RuntimeError(f"_gpu_free returned {made.status}")
|
||||
uvm.free(self.fd_uvm, base=mem.base, length=mem.length)
|
||||
|
||||
def _gpu_host_free(self, mem):
|
||||
uvm.free(self.fd_uvm, base=mem.base, length=mem.length)
|
||||
libc.munmap(mem.base, mem.length)
|
||||
|
||||
def _map_to_gpu(self, va_base, size):
|
||||
NVDevice.host_object_enumerator += 1
|
||||
flags = ((nv_gpu.NVOS02_FLAGS_PHYSICALITY_NONCONTIGUOUS << 4) | (nv_gpu.NVOS02_FLAGS_COHERENCY_CACHED << 12) |
|
||||
(nv_gpu.NVOS02_FLAGS_MAPPING_NO_MAP << 30))
|
||||
made = nv_gpu.nv_ioctl_nvos02_parameters_with_fd(params=nv_gpu.NVOS02_PARAMETERS(hRoot=self.root, hObjectParent=self.device, flags=flags,
|
||||
hObjectNew=NVDevice.host_object_enumerator, hClass=nv_gpu.NV01_MEMORY_SYSTEM_OS_DESCRIPTOR, pMemory=va_base, limit=size-1), fd=-1)
|
||||
nv_iowr(self.fd_dev, nv_gpu.NV_ESC_RM_ALLOC_MEMORY, made)
|
||||
if made.params.status != 0: raise RuntimeError(f"_map_to_gpu returned {made.params.status}")
|
||||
return self._gpu_uvm_map(va_base, size, made.params.hObjectNew)
|
||||
|
||||
def _gpu_uvm_map(self, va_base, size, mem_handle, create_range=True) -> nv_gpu.UVM_MAP_EXTERNAL_ALLOCATION_PARAMS:
|
||||
if create_range: uvm.create_external_range(self.fd_uvm, base=va_base, length=size)
|
||||
gpu_attrs = (nv_gpu.struct_c__SA_UvmGpuMappingAttributes*256)(
|
||||
nv_gpu.struct_c__SA_UvmGpuMappingAttributes(gpuUuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), gpuMappingType = 1))
|
||||
return uvm.map_external_allocation(self.fd_uvm, base=va_base, length=size, rmCtrlFd=self.fd_ctl, hClient=self.root, hMemory=mem_handle,
|
||||
gpuAttributesCount=1, perGpuAttributes=gpu_attrs)
|
||||
|
||||
def _alloc_gpu_vaddr(self, size, alignment=(4 << 10)):
|
||||
NVDevice.uvm_vaddr = (res_va:=round_up(NVDevice.uvm_vaddr, alignment)) + size
|
||||
return res_va
|
||||
|
||||
def __init__(self, device:str=""):
|
||||
if NVDevice.root is None:
|
||||
NVDevice.fd_ctl = os.open("/dev/nvidiactl", os.O_RDWR | os.O_CLOEXEC)
|
||||
NVDevice.fd_uvm = os.open("/dev/nvidia-uvm", os.O_RDWR | os.O_CLOEXEC)
|
||||
fd_uvm_2 = os.open("/dev/nvidia-uvm", os.O_RDWR | os.O_CLOEXEC)
|
||||
NVDevice.root = rm_alloc(self.fd_ctl, nv_gpu.NV01_ROOT_CLIENT, 0, 0, None).hObjectNew
|
||||
uvm.initialize(self.fd_uvm)
|
||||
uvm.mm_initialize(fd_uvm_2, uvmFd=self.fd_uvm)
|
||||
|
||||
NVDevice.gpus_info = (nv_gpu.nv_ioctl_card_info_t*16)()
|
||||
nv_iowr(NVDevice.fd_ctl, nv_gpu.NV_ESC_CARD_INFO, NVDevice.gpus_info)
|
||||
|
||||
# TODO: Get classes from NV0080_CTRL_CMD_GPU_GET_CLASSLIST_V2
|
||||
self.device_id = int(device.split(":")[1]) if ":" in device else 0
|
||||
self.fd_dev = self._new_gpu_fd()
|
||||
|
||||
assert NVDevice.gpus_info[self.device_id].valid
|
||||
gpu_info = nv_gpu.NV0000_CTRL_GPU_GET_ID_INFO_V2_PARAMS(gpuId=NVDevice.gpus_info[self.device_id].gpu_id)
|
||||
rm_control(self.fd_ctl, nv_gpu.NV0000_CTRL_CMD_GPU_GET_ID_INFO_V2, self.root, self.root, gpu_info)
|
||||
|
||||
device_params = nv_gpu.NV0080_ALLOC_PARAMETERS(deviceId=gpu_info.deviceInstance, hClientShare=self.root,
|
||||
vaMode=nv_gpu.NV_DEVICE_ALLOCATION_VAMODE_MULTIPLE_VASPACES)
|
||||
self.device = rm_alloc(self.fd_ctl, nv_gpu.NV01_DEVICE_0, self.root, self.root, device_params).hObjectNew
|
||||
self.subdevice = rm_alloc(self.fd_ctl, nv_gpu.NV20_SUBDEVICE_0, self.root, self.device, None).hObjectNew
|
||||
self.usermode = rm_alloc(self.fd_ctl, nv_gpu.TURING_USERMODE_A, self.root, self.subdevice, None).hObjectNew
|
||||
gpu_mmio_ptr = self._gpu_map_to_cpu(self.usermode, 0x10000, flags=2)
|
||||
self.gpu_mmio = to_mv(gpu_mmio_ptr, 0x10000).cast("I")
|
||||
|
||||
vaspace_params = nv_gpu.NV_VASPACE_ALLOCATION_PARAMETERS(vaBase=0x1000, vaSize=0x1fffffb000000,
|
||||
flags=nv_gpu.NV_VASPACE_ALLOCATION_FLAGS_ENABLE_PAGE_FAULTING | nv_gpu.NV_VASPACE_ALLOCATION_FLAGS_IS_EXTERNALLY_OWNED)
|
||||
vaspace = rm_alloc(self.fd_ctl, nv_gpu.FERMI_VASPACE_A, self.root, self.device, vaspace_params).hObjectNew
|
||||
|
||||
gpu_uuid_params = nv_gpu.NV2080_CTRL_GPU_GET_GID_INFO_PARAMS(flags=nv_gpu.NV2080_GPU_CMD_GPU_GET_GID_FLAGS_FORMAT_BINARY, length=16)
|
||||
rm_control(self.fd_ctl, nv_gpu.NV2080_CTRL_CMD_GPU_GET_GID_INFO, self.root, self.subdevice, gpu_uuid_params)
|
||||
self.gpu_uuid = (ctypes.c_ubyte*16)(*[gpu_uuid_params.data[i] for i in range(16)])
|
||||
|
||||
uvm.register_gpu(self.fd_uvm, rmCtrlFd=-1, gpu_uuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid))
|
||||
uvm.register_gpu_vaspace(self.fd_uvm, gpuUuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), rmCtrlFd=self.fd_ctl,
|
||||
hClient=self.root, hVaSpace=vaspace)
|
||||
|
||||
for dev in self.devices:
|
||||
uvm.enable_peer_access(self.fd_uvm, gpuUuidA=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), gpuUuidB=nv_gpu.struct_nv_uuid(uuid=dev.gpu_uuid))
|
||||
|
||||
if NVDevice.signals_page is None: NVDevice.signals_page = self._gpu_system_alloc(0x10000, map_to_cpu=True)
|
||||
else: self._gpu_uvm_map(NVDevice.signals_page.base, NVDevice.signals_page.length, NVDevice.signals_page.hMemory, create_range=False)
|
||||
|
||||
channel_params = nv_gpu.NV_CHANNEL_GROUP_ALLOCATION_PARAMETERS(engineType=nv_gpu.NV2080_ENGINE_TYPE_GRAPHICS)
|
||||
channel_group = rm_alloc(self.fd_ctl, nv_gpu.KEPLER_CHANNEL_GROUP_A, self.root, self.device, channel_params).hObjectNew
|
||||
|
||||
gpfifo = self._gpu_alloc(0x200000, contig=True, huge_page=True, map_to_cpu=True, map_flags=0x10d0000)
|
||||
|
||||
ctxshare_params = nv_gpu.NV_CTXSHARE_ALLOCATION_PARAMETERS(hVASpace=vaspace, flags=nv_gpu.NV_CTXSHARE_ALLOCATION_FLAGS_SUBCONTEXT_ASYNC)
|
||||
ctxshare = rm_alloc(self.fd_ctl, nv_gpu.FERMI_CONTEXT_SHARE_A, self.root, channel_group, ctxshare_params).hObjectNew
|
||||
|
||||
self.compute_gpfifo_entries: int = 0x10000
|
||||
self.compute_gpfifo_token: int = self._gpu_fifo_setup(gpfifo, ctxshare, channel_group, offset=0, entries=self.compute_gpfifo_entries)
|
||||
self.compute_gpu_ring: memoryview = to_mv(gpfifo.base, self.compute_gpfifo_entries * 8).cast("Q")
|
||||
self.compute_gpu_ring_controls = nv_gpu.AmpereAControlGPFifo.from_address(gpfifo.base + self.compute_gpfifo_entries * 8)
|
||||
self.compute_put_value: int = 0
|
||||
self.compute_progress_signal = NVDevice._get_signal(self.device_id * 2)
|
||||
|
||||
self.dma_gpfifo_entries: int = 0x10000
|
||||
self.dma_gpfifo_token: int = self._gpu_fifo_setup(gpfifo, ctxshare, channel_group, offset=0x100000, entries=self.dma_gpfifo_entries)
|
||||
self.dma_gpu_ring: memoryview = to_mv(gpfifo.base + 0x100000, self.dma_gpfifo_entries * 8).cast("Q")
|
||||
self.dma_gpu_ring_controls = nv_gpu.AmpereAControlGPFifo.from_address(gpfifo.base + 0x100000 + self.dma_gpfifo_entries * 8)
|
||||
self.dma_put_value: int = 0
|
||||
self.dma_progress_signal = NVDevice._get_signal(self.device_id * 2 + 1)
|
||||
|
||||
en_fifo_params = nv_gpu.NVA06C_CTRL_GPFIFO_SCHEDULE_PARAMS(bEnable=1)
|
||||
rm_control(self.fd_ctl, nv_gpu.NVA06C_CTRL_CMD_GPFIFO_SCHEDULE, self.root, channel_group, en_fifo_params)
|
||||
|
||||
self.cmdq_page: nv_gpu.UVM_MAP_EXTERNAL_ALLOCATION_PARAMS = self._gpu_alloc(0x200000, map_to_cpu=True, huge_page=True)
|
||||
self.cmdq: memoryview = to_mv(self.cmdq_page.base, 0x200000).cast("I")
|
||||
self.cmdq_wptr: int = 0 # in bytes
|
||||
|
||||
self.kernargs_page: nv_gpu.UVM_MAP_EXTERNAL_ALLOCATION_PARAMS = self._gpu_alloc(0x4000000, map_to_cpu=True)
|
||||
self.kernargs_ptr: int = self.kernargs_page.base
|
||||
|
||||
self.arch: str = 'sm_89' # TODO: fix
|
||||
self.pending_copyin: List[Any] = []
|
||||
|
||||
super().__init__(device, NVAllocator(self), NVCompiler(self.arch), functools.partial(NVProgram, self))
|
||||
|
||||
self._cmdq_setup_compute_gpfifo()
|
||||
self._cmdq_setup_dma_gpfifo()
|
||||
|
||||
NVDevice.devices.append(self)
|
||||
|
||||
def synchronize(self):
|
||||
self._wait_signal(self.compute_progress_signal, self.compute_put_value)
|
||||
self._wait_signal(self.dma_progress_signal, self.dma_put_value)
|
||||
self.cmdq_wptr = 0
|
||||
|
||||
for opaque,sz,options in self.pending_copyin: self.allocator.free(opaque, sz, options)
|
||||
self.pending_copyin.clear()
|
||||
|
||||
@staticmethod
|
||||
def synchronize_system():
|
||||
for d in NVDevice.devices: d.synchronize()
|
||||
|
||||
@classmethod
|
||||
def _get_signal(self, num=None) -> memoryview:
|
||||
if num is None:
|
||||
self.signal_number += 1
|
||||
if self.signals_page and self.signal_number * 16 >= self.signals_page.length: self.signal_number = 32
|
||||
num = self.signal_number
|
||||
sig = to_mv(self.signals_page.base + num * 16, 16).cast("Q")
|
||||
sig[0] = 0
|
||||
return sig
|
||||
|
||||
@classmethod
|
||||
def _wait_signal(self, signal, value=0, timeout=10000):
|
||||
start_time = time.time()
|
||||
sem_value = signal[0]
|
||||
while sem_value != value:
|
||||
sem_value = signal[0]
|
||||
if time.time() - start_time > timeout // 1000: raise RuntimeError(f"wait_result: {timeout} ms TIMEOUT!")
|
||||
|
||||
def _gpu_fifo_setup(self, gpfifo, ctxshare, channel_group, offset, entries=0x400):
|
||||
notifier = self._gpu_system_alloc(48 << 20)
|
||||
params = nv_gpu.NV_CHANNELGPFIFO_ALLOCATION_PARAMETERS(hObjectError=notifier.hMemory, hObjectBuffer=gpfifo.hMemory,
|
||||
gpFifoOffset=gpfifo.base+offset, gpFifoEntries=entries, hContextShare=ctxshare,
|
||||
hUserdMemory=(ctypes.c_uint32*8)(gpfifo.hMemory), userdOffset=(ctypes.c_uint64*8)(entries*8+offset))
|
||||
gpfifo = rm_alloc(self.fd_ctl, nv_gpu.AMPERE_CHANNEL_GPFIFO_A, self.root, channel_group, params).hObjectNew
|
||||
rm_alloc(self.fd_ctl, nv_gpu.ADA_COMPUTE_A, self.root, gpfifo, None)
|
||||
rm_alloc(self.fd_ctl, nv_gpu.AMPERE_DMA_COPY_B, self.root, gpfifo, None)
|
||||
|
||||
ws_token_params = nv_gpu.NVC36F_CTRL_CMD_GPFIFO_GET_WORK_SUBMIT_TOKEN_PARAMS(workSubmitToken=-1)
|
||||
rm_control(self.fd_ctl, nv_gpu.NVC36F_CTRL_CMD_GPFIFO_GET_WORK_SUBMIT_TOKEN, self.root, gpfifo, ws_token_params)
|
||||
assert ws_token_params.workSubmitToken != -1
|
||||
|
||||
channel_base = self._alloc_gpu_vaddr(0x4000000)
|
||||
uvm.register_channel(self.fd_uvm, gpuUuid=nv_gpu.struct_nv_uuid(uuid=self.gpu_uuid), rmCtrlFd=self.fd_ctl, hClient=self.root,
|
||||
hChannel=gpfifo, base=channel_base, length=0x4000000)
|
||||
|
||||
return ws_token_params.workSubmitToken
|
||||
|
||||
def _cmdq_setup_compute_gpfifo(self):
|
||||
self.slm_per_thread = 0x900
|
||||
bytes_per_warp = round_up(self.slm_per_thread * 32, 0x200)
|
||||
bytes_per_tpc = round_up(bytes_per_warp * 48 * 2, 0x8000)
|
||||
self.shader_local_mem = self._gpu_alloc(round_up(bytes_per_tpc * 64, 0x20000), huge_page=True, contig=True).base
|
||||
|
||||
# Set windows addresses to not collide with other allocated buffers.
|
||||
self.shared_mem_window, self.local_mem_window = 0xfe000000, 0xff000000
|
||||
|
||||
queue = HWComputeQueue()
|
||||
queue.q += [nvmethod(1, nv_gpu.NVC6C0_SET_OBJECT, 1), nv_gpu.ADA_COMPUTE_A]
|
||||
queue.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_A, 2), *nvdata64(self.shader_local_mem)]
|
||||
queue.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_NON_THROTTLED_A, 3), *nvdata64(bytes_per_tpc), 0x40]
|
||||
queue.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_WINDOW_A, 2), *nvdata64(self.local_mem_window)]
|
||||
queue.q += [nvmethod(1, nv_gpu.NVC6C0_SET_SHADER_SHARED_MEMORY_WINDOW_A, 2), *nvdata64(self.shared_mem_window)]
|
||||
queue.submit(self)
|
||||
self.synchronize()
|
||||
|
||||
def _cmdq_setup_dma_gpfifo(self):
|
||||
queue = HWCopyQueue()
|
||||
queue.q += [nvmethod(4, nv_gpu.NVC6C0_SET_OBJECT, 1), nv_gpu.AMPERE_DMA_COPY_B]
|
||||
queue.submit(self)
|
||||
self.synchronize()
|
||||
Reference in New Issue
Block a user