Test split (#231)

* Split tests

Split tests into "Test CPU" and "Test GPU".

Add test flag "TEST_DEVICES" which is a comma separated list of devices:
CPU,GPU,ANE

* Run tests based on provided TEST_DEVICES flag

By default will run all "CPU,GPU,ANE"

* fix bad quote

* Revert changes and use GPU=1

This is done through setting the default Tensor Device to Device.CPU of
GPU=1 is set.

Run GPU tests: GPU=1 pytest -s -v
This commit is contained in:
Liam
2021-01-01 15:19:03 +01:00
committed by GitHub
parent 4a7cf2e420
commit ebd72ff437
10 changed files with 137 additions and 213 deletions

View File

@@ -1,7 +1,7 @@
import numpy as np
import torch
import unittest
from tinygrad.tensor import Tensor, GPU, ANE, Device
from tinygrad.tensor import Tensor
from tinygrad.optim import Adam, SGD, RMSprop
from extra.utils import get_parameters
@@ -9,11 +9,9 @@ x_init = np.random.randn(1,3).astype(np.float32)
W_init = np.random.randn(3,3).astype(np.float32)
m_init = np.random.randn(1,3).astype(np.float32)
def step_tinygrad(optim, kwargs={}, device=Device.CPU):
def step_tinygrad(optim, kwargs={}):
net = TinyNet()
optim = optim([net.x, net.W], **kwargs)
if device==Device.GPU: [x.gpu_() for x in get_parameters([net, optim])]
elif device==Device.ANE: [x.ane_() for x in get_parameters([net, optim])]
out = net.forward()
out.backward()
optim.step()
@@ -55,33 +53,22 @@ class TorchNet():
class TestOptim(unittest.TestCase):
device = Device.CPU
def test_adam(self):
for x,y in zip(step_tinygrad(Adam, device=self.device),
for x,y in zip(step_tinygrad(Adam),
step_pytorch(torch.optim.Adam)):
np.testing.assert_allclose(x, y, atol=1e-4)
def test_sgd(self):
for x,y in zip(step_tinygrad(SGD, kwargs={'lr': 0.001}, device=self.device),
for x,y in zip(step_tinygrad(SGD, kwargs={'lr': 0.001}),
step_pytorch(torch.optim.SGD, kwargs={'lr': 0.001})):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_rmsprop(self):
for x,y in zip(step_tinygrad(RMSprop, kwargs={'lr': 0.001, 'decay': 0.99}, device=self.device),
for x,y in zip(step_tinygrad(RMSprop, kwargs={'lr': 0.001, 'decay': 0.99}),
step_pytorch(torch.optim.RMSprop,
kwargs={'lr': 0.001, 'alpha': 0.99})):
np.testing.assert_allclose(x, y, atol=1e-5)
@unittest.skipUnless(GPU, "Requires GPU")
class TestOptimGPU(TestOptim):
device = Device.GPU
@unittest.skipUnless(ANE, "Requires ANE")
class TestOptimANE(TestOptim):
device = Device.ANE
if __name__ == '__main__':
unittest.main()