Commit Graph

140 Commits

Author SHA1 Message Date
wozeparrot
b979162c5d llama3 eval train (#11706) 2025-08-20 19:56:35 -04:00
chenyu
dbd3b67657 clamp GRAD_CLIP_NORM in llama (#11761) 2025-08-20 19:55:50 -04:00
chenyu
e9d0027591 llama MP realize weight after shard (#11672)
* llama MP realize weight after shard

prevents memory spike on device 0

* empty weight for FAKEDATA
2025-08-14 16:17:46 -04:00
chenyu
ef17af85c6 remove .float call in llama logit (#11598)
* remove .float call in llama logit

* bfloat item
2025-08-10 00:02:18 -04:00
chenyu
45baec1aab model parallel llama (#11588)
MP=8 GRADIENT_ACC_STEPS=3 BS=1 DEFAULT_FLOAT=bfloat16 OPTIM_DTYPE=bfloat16 LLAMA3_SIZE=70B SEQLEN=512 PYTHONPATH=. MODEL=llama3 python3 examples/mlperf/model_train.py
2025-08-09 16:54:27 -04:00
wozeparrot
2d5bdc939d faster llama3 dataloader (#11540) 2025-08-06 18:25:57 -04:00
chenyu
f7965f85aa Revert "feat: faster index building (#11462)" (#11478)
This reverts commit 3a4deb08d2.
2025-08-02 12:50:48 -04:00
wozeparrot
3a4deb08d2 feat: faster index building (#11462)
* feat: faster index building

* feat: correct training samples
2025-08-02 11:50:18 -04:00
chenyu
9e8e6b45ab grad acc train llama (#11467)
* grad acc train llama

* log step time
2025-08-01 15:54:50 -04:00
chenyu
7ad7329257 data parallel train llama (#11466) 2025-08-01 12:13:51 -04:00
George Hotz
8ff03806e8 add llama layers (#11460)
* add llama layers

* add contig bw for speed
2025-07-31 16:28:04 -07:00
wozeparrot
6252f7770e feat: fake data (#11447) 2025-07-30 17:18:20 -07:00
chenyu
e300451f3a update llama3 (#11446)
`LR=1e-4 TRAIN_ON_VAL=1 DEFAULT_FLOAT=bfloat16 FUSE_ARANGE=1 JITBEAM=2 OPTIM_DTYPE=bfloat16 LLAMA3_SIZE=1B WARMUP_STEPS=36 DECAY_STEPS=360 SEQLEN=512 PYTHONPATH=. AMD=1 AMD_LLVM=0 MODEL=llama3 python3 examples/mlperf/model_train.py` trained to 7
2025-07-30 19:34:21 -04:00
wozeparrot
5fb975351a feat: flag for training on val (#11441) 2025-07-30 14:29:45 -07:00
wozeparrot
825b6a2505 feat: llama3 dataloader (#11340) 2025-07-30 13:27:55 -07:00
chenyu
c14c9a8eff llama3 grad clip (#11003) 2025-06-27 19:14:12 -04:00
chenyu
f2548afeb5 bert grad clipping start with const 0 (#11008)
saved the init kernels
2025-06-27 18:02:23 -04:00
chenyu
6ab5a5cb6c llama3 mlperf train (#10983)
work in progress. now it can overfit small examples and vram roughly matches
2025-06-26 20:24:27 -04:00
chenyu
b70c7d3631 bert grad accumulation (#10863)
* bert grad accumulation

* realize grad
2025-06-18 12:17:07 -04:00
chenyu
075a74cf25 add global_batch_size to mlperf bert (#10852)
global_batch_size = grad_acc_steps * batch_size. no-op change to prep grad acc for bert
2025-06-17 17:54:15 -04:00
chenyu
81e296d7b8 remove Tensor.test() in retinanet (#10770)
test was removed
2025-06-10 22:14:57 -04:00
George Hotz
b3b43a82c4 remove Tensor.no_grad, it's meaningless now [pr] (#10556) 2025-05-28 22:20:02 -07:00
chenyu
dc6309242d WallTimeEvent for mlperf ci (#10506) 2025-05-24 10:56:03 -04:00
chenyu
485e80da69 run_and_time for resnet ci (#10405) 2025-05-18 23:39:57 -04:00
wozeparrot
1ed04f993b move benchmark stat tracking to influxdb (#10185) 2025-05-15 16:14:56 -07:00
chenyu
610ee79b22 cherry pick mlperf5.0 branch to master (#10089) 2025-04-28 15:36:56 -04:00
chenyu
74c6cf8be3 lint mlperf model_train (#10038) 2025-04-24 16:19:44 -04:00
chenyu
a25abf55e3 retinanet only call postprocess_detections with RUNMLPERF (#10017)
during setup only need to compile `_eval_step().numpy()`
2025-04-23 20:45:38 -04:00
chenyu
a3f938dbee remove retinanet INITMLPERF from beam script (#10011)
it only controls logging, loading real data or not is solely controlled by RUNMLPERF
2025-04-23 14:32:54 -04:00
Francis Lata
5542aeb0e4 RetinaNet MLPerf flag updates (#10009)
* add RUNMLPERF and update INITMLPERF usage

* update scripts to use RUNMLPERF
2025-04-23 13:00:34 -04:00
George Hotz
de0504276b pop 0 is slow [pr] (#10007) 2025-04-23 17:00:59 +01:00
chenyu
c39128133c retinanet green scripts (#9996)
also removed realize in data_get and used empty for fake data. slightly bigger lr. https://wandb.ai/chenyuxyz/MLPerf-RetinaNet/runs/8skid0e8?nw=nwuserchenyuxyz
2025-04-23 08:28:03 -04:00
chenyu
fb89d9a584 retinanet eval combine output on GPUS[0] (#9966)
eval 35 sec -> 20 sec. it was spending 13 seconds assembling output tensor on CPU backend. GPUS[0] seems to have enough memory, otherwise we can lower EVAL_BS
2025-04-22 07:43:51 -04:00
chenyu
5294c32279 dev scripts for retinanet (#9968)
also BASE_DIR -> BASEDIR for consistency, and move wandb up a bit for more accurate timing
2025-04-21 17:54:56 -04:00
Francis Lata
defa1e77f6 get the proper dataset count (#9962) 2025-04-21 12:11:37 -04:00
Francis Lata
d7e247f329 RetinaNet INITMLPERF support (#9950)
* fixes to make fake data work

* fix eval beam

* fix merge issue
2025-04-21 10:32:05 -04:00
Francis Lata
ea4cb2c715 small cleanups (#9947) 2025-04-20 20:33:20 -04:00
chenyu
e8024c8281 faster bert global_norm (#9901)
tinyamd 2% faster.  also updated beam params that's 2-3% faster.

update mlperf doc and steps too
2025-04-15 18:24:44 -04:00
Francis Lata
31483050c0 add eval_freq flag (#9894) 2025-04-15 06:42:40 -04:00
chenyu
43d3a75d6c increase bert max train_steps (#9883) 2025-04-14 08:53:44 -04:00
Francis Lata
2793cca9a6 RetinaNet MLPerf (#8385)
* add support for a custom BASEDIR for openimages download

* make export step faster

* add focal loss

* update model_eval with new dataloader

* generate_anchors in tinygrad

* update initializers for model

* small cleanup

* revert isin enhancements

* recursively go through backbone layers to freeze them

* add optimizer

* minor cleanup

* start dataloader work with input images

* add first transform for train set

* reuse existing prepare_target

* continue with dataloader implementation

* add dataloader

* separate out KiTS19 dataset test cases

* create mock data samples for test

* add dataloader + test

* cleanup dataloader test and revert shm path

* trim dataloader related code needed from ref

* got dataloader with normalize working

* update image to be float32

* add back normalization and negate it in test

* clean up reference dataset implementation + ruff changes

* add validation set test

* add proper training loop over the training dataset

* add LambdaLR support

* add LR scheduler and the start of training step

* get forward call to model work and setup multi-GPU

* already passed device

* return matches from dataloader

* hotfix for dataloader typo causing some hang

* start some work on classification loss

* update focal loss to support masking

* add missing test and cleanup focal loss

* cleanup unit tests

* remove masking support for sigmoid_focal_loss

* make ClassificationHead loss work

* cleanups + fix dataloader tests

* remove sigmoid when computing loss

* make anchors use Tensors

* simplify anchors batching

* revert anchors to use np

* implement regression loss

* fix regression loss

* cleanup losses

* move BoxCoder to MLPerf helpers

* revert helper changes

* fixes after helper refactor cleanup

* add tests for l1_loss

* start re-enabling training step

* minor cleanup

* add pycocotools to testing dependencies

* make training work

* adjust regression loss to mask after L1 loss is calculated

* reduce img and lbl sizes by half for KiTS19 dataset tests

* Revert "reduce img and lbl sizes by half for KiTS19 dataset tests"

This reverts commit d115b0c664.

* temporarily disable openimages dataset tests to debug CI

* enable openimages dataset test and create samples once

* temporarily disable openimages validation set test

* reenable test and add some debugging to the test

* add boto3 testing dependencies

* add pandas to testing dependencies

* This reverts commit 467704fec6.

* reenable test

* move sample creation to setup

* realize boxcoder's encoding

* add wandb

* fix wandb resuming feature

* move anchors as part of dataloader

* fix dtype for anchor inside dataloader and fix horizontal flip transformation

* add support for BENCHMARK

* set seed

* debug dataset test failuire

* Revert "debug dataset test failuire"

This reverts commit 1b2f9d7f50.

* fix dataloader script

* do not realize when sharding model weights

* setup openimages samples differently

* create the necessary samples per test case

* enable lr scheduler and fix benchmark timing

* add jit to the training loop

* add checkpointing and training resume capabilities

* refactor on training loop and start the work on val looop

* add debug logging for dataloader test

* debug test

* assert boxes again

* update validation dataloader and more cleanups

* fix validation test case

* add multi device support to retinanet eval

* fix issue with realized on dataloader

* remove optional disk tensors in dataloader

* remove verbose debugging on datasets test

* put back parallel testing and remove img_ids Tensor from dataloader

* cleanup train and validation dataloader

* return validation targets in dataloader

* cleanup boxes and labels in dataloader

* fix img_ids repeating its values

* remove unnecessary targets from validation dataloader

* add validation loop to training script

* adjust LR to be the ratio of the batch size

* minor cleanups

* remove frozen layers from optimizer's params

* hyperparameter adjustments and cleanups

* model init, hyperparam, and data preprocessing updates

* no need to return loaded keys for resnet

* fix train script

* update loss calculation for regresionhead and some cleanups

* add JIT reset support

* add nan check during training

* Revert "add nan check during training"

This reverts commit ddf1f0d5dd.

* Revert "Revert "add nan check during training""

This reverts commit b7b2943197.

* some typing cleanups

* update seeding on dataloader and the start of training script

* undo changse

* undo more changes

* more typing fixes

* minor cleanups

* update dataloader seed

* hotfix: log metric and move target metric check outside of CKPT

* check for CKPT when target metric is reached before saving

* add TRAIN_BEAM and EVAL_BEAM

* minor cleanup

* update hyperparams and add support for EVAL_BS

* add green coloring to metric reached statement

* initial work to support f16

* update model initializers to be monkeypatched

* update layers to support float32 weight loading + float16 training

* don't return loss that's scaled

* run eval on benchmark beam

* move BEAM to their respective steps

* update layers to be compatible with fp16

* end BENCHMARK after first eval

* cleanups and adjust learning rate for fp16

* remove duplicated files from test

* revert losses changes

* Revert "revert losses changes"

This reverts commit aebccf93ac.

* go back to old LR

* cast batchnorm to float32

* set new loss scaler default value for float16

* remove LambdaLRScheduler

* remove runner and use dataloader on eval

* fix retinanet eval with new dataloader

* remove unused import

* revert lr_scheduler updates

* use BS=96 with new learning rate

* rename module initializers

* more cleanups on training loop

* remove contig from optim.step

* simplify sum when computing loss
2025-04-12 22:11:51 -04:00
chenyu
4aab16ca6a bert script cleanup and assert nan loss (#9851) 2025-04-11 05:41:49 -04:00
chenyu
a0b72f066a don't free intermediate for bert mi300x (#9824) 2025-04-10 01:48:34 -04:00
chenyu
6b3480ec70 update mi300x bert haparams (#9716)
* update mi300x bert haparams

borrowed from previous submission that also did BS=1024

* update
2025-04-03 22:30:00 -04:00
chenyu
a6fec2f5ae dev_run for bert on mi300x (#9706) 2025-04-02 21:12:55 -04:00
chenyu
f7cb2e8da3 bert dev_beam for mi300x box (#9648)
* bert dev_beam for mi300x box

* terminate BENCHMARK properly
2025-03-31 08:35:51 -04:00
chenyu
d8d7ac1bb1 fix bert free_intermediates (#9633)
fix when only run eval `TRAIN=0 BERT_SIZE=tiny examples/mlperf/training_submission_v5.0/tinycorp/benchmarks/bert/implementations/tinybox_green/dev_beam.sh`
2025-03-30 22:42:52 -04:00
chenyu
f53be010d7 lower bert learning rate (#9481)
slightly better. first sub 3hr run https://wandb.ai/chenyuxyz/MLPerf-BERT/runs/0or96ink/overview
2025-03-17 10:49:56 -04:00
chenyu
d2cfbd8a4d bert lower learning rate and total steps (#9466)
closer to the other submission with BS=240. converged with 10% less epochs
2025-03-16 17:21:20 -04:00
chenyu
22fc0a2e36 bert sum acc in half (#9412)
also BS=96
2025-03-11 23:03:15 -04:00