* Rename in files
* Move files
* Moved to extra/datasets as suggested
* Changes to files
* Fixed stupid mistake
---------
Co-authored-by: terafo <terafo@protonmail.com>
* Fixes + improved test coverage for helpers.py
- added exception handling in `proc`, if an exception was thrown, the thread would hang
- made `_early_exec_process` catch any Exception, before if an exception was thrown before the process was started, it would hand the thread
* Made `_early_exec_process` catch any Exception
Otherwise, if an exception was thrown before the process was started, it would hang the thread. For example a type error for an argument passed to `subprocess.check_output`
* Fixed `from tinygrad.helpers import Timing` import
oops, for some reason my IDE cleaned that import from extra/helpers.
* Fixed import in llama.py
Another one that I skipped by accident, mybad
* Extracted a class for tests of early exec
* Normalize line endings, windows uses /r/n
* Made `cross_process` not a daemon
* fixed division by zero for fast operations
* made et closer to 0
* replace POW llop with SQRT
* updated mlops to swap SQRT and POW llops
* updated hlops to swap POW and SQRT
* added sqrt llop to cpu runtime
* added sqrt llop to cstyle codegen
* added POW llop to llvm ir codegen
* added SQRT llop to torch runtime
* moved pow from mlops to hlops
* found a better way to do reverse pow
* fixed indentation
* added SQRT llop to triton
* update docs to match new llops
* removed POW operator from assembly codegen
* added sqrt and rsqrt to pow hlop
* rewrote pow function in tensor.py
* Adjust tolerance
* Adjust for adamw
* Reduce for Adam too
* removed accidental leftover code
* removed all of accidental code
* added rsqrt test
* removed pow from mlops again
it was added back when resolving merge conflicts
---------
Co-authored-by: Jacky Lee <jla524@sfu.ca>
* fix syntax issues in imagenet_download.py
* use cloudpickle in cross_process to make it work in Python 3.9+
* add cross_process test
* prevent unpickling on every function call
* add cloudpickle to setup.py
* add support for args/kwargs
* Use generators in any(..) instead of lists for better best-case
* Use generators in all(...) instead of lists
* enable R1729 in .pylintrc
* revert import sorting
---------
Co-authored-by: Anselm Coogan <anselm@scandit.com>
* matrix strategy
* push env to GITHUB_ENV
* use printf instead of echo
* use temp helper function for cross os paths
* use path join
* switched to using temp helper function
* skip test on windows due to memory limit
* small fix
* removed semi
* touchups
* clean up
* seperate tests
* test changes to test_utils on windows
* small refactor
* more cleanups
* undo helpers change
* only skip if in CI and WINDOWS
* Revert "Revert "ops rdna""
This reverts commit 0400315078.
* Revert "Revert "writing 2""
This reverts commit 325a3bf2cf.
* no dump
* 2x 2
* simple asm
* local size
* sub
* lil work
* support args != 3
* assembler work
* generate that
* ptx assembler
* begin index renderer
* max
* ptx loops
* gemms work
* valid works
* asm working a bit more
* close
* passing all ops tests
* ptx is a codegen only, not a backend
* ptx
* float16 support
* rdna goes here
* install types
* make amd disassemble
* ansilen for pretty print
* fix ptx log2/exp2
* assemblyinstruction
* new asm
* working gemm
* fix cmp
* more passing
* mod
* ptx works again
* rdan3 add works
* log exp
* sin is sin 2pi
* fix types
* progress
* loops work
* rdna xyz
* better addressing
* cleanups
* handle exception in early process
* div support
* rdna float4
* locals work
* fix neg index
* cast
* smaller diff
* yaml
* import only if selected
* fromimport
* types
* this all needs rewriting
* a few more
* resolved some slice test errors and added some more debugging logs
* use same device in cumsum
* increased float priority
* onnx debug ouput match input
* ConstantOfShape ONNX test fixed.
* removed redundant if statement
* value is optional and should default to a float32 tensor with value of 0
* fixed: default parameters are created at function definition, bad for mutable objects.
* Fix ONNX dropout and unify the implementation
* Use tensor rand method for dropout
* Change approach for RNG in ONNX Dropout
* Fix style
* Test legacy RNG seeding
* Remove the necessity for legacy RNG in Tensor class