George Hotz
3f4eb9006a
test for device mismatch [pr] ( #9250 )
...
* test for device mismatch [pr]
* fix bert
2025-02-26 13:06:33 +08:00
chenyu
979e84f30e
RESET_STEP in bert setup and beam ( #9248 )
...
running dev_beam migh OOM without it but runs fine in real run.
2025-02-25 19:15:10 -05:00
chenyu
6610ad58ab
hotfix bert no shard with only one device ( #9243 )
...
`LLVM=1 BERT_SIZE="tiny" DEFAULT_FLOAT=HALF BENCHMARK=5 MODEL="bert" python3 examples/mlperf/model_train.py` runs for me with this. it should not failed with single device shard though
2025-02-25 09:05:11 -05:00
chenyu
8c7be428e5
update bert BS to 78 ( #9236 )
...
fits 78 now. about 215 tflops on green
2025-02-24 22:47:35 -05:00
chenyu
2e7c2780a9
CLANG -> CPU ( #9189 )
2025-02-20 18:03:09 -05:00
chenyu
3b37cc898b
add bert tiny config ( #9177 )
...
set with BERT_SIZE=tiny. easier to study embedding and fusion
2025-02-19 14:57:03 -05:00
chenyu
975c318dbc
bert use int32 for input ids ( #9173 )
...
original data was int32 for these. float might have caused precision issues
2025-02-19 08:17:27 -05:00
chenyu
ff05bff221
put bert data shard inside jit ( #9160 )
...
python time 45ms -> 9ms, it was spending time to schedule the shard
also init bert data on CLANG since it's from numpy, so we don't create the tensor on default device then shard into GPUS
2025-02-18 10:36:54 -05:00
chenyu
5dc1257ce0
clean up bert fake data iterator [pr] ( #9145 )
...
reuse the same get_data_bert path in setup and real run
2025-02-17 20:03:38 -05:00
chenyu
81597ddd96
increase lr for bert ( #9098 )
...
had one run that converged better https://wandb.ai/chenyuxyz/MLPerf-BERT/runs/u66tv2hh/overview
2025-02-14 19:10:35 -05:00
chenyu
b58e7b1898
zero out the weight in bert init run ( #9076 )
...
`DEFAULT_FLOAT=HALF BENCHMARK=10 BS=66 EVAL_BS=6 GPUS=6 MODEL=bert python3 examples/mlperf/model_train.py` no longer oom. I think the buffer of random init weights caused the oom.
2025-02-14 08:40:41 -05:00
chenyu
9e91898941
bert eval at the end of training ( #9070 )
...
always eval at the last epoch
2025-02-13 16:29:44 -05:00
chenyu
7b5ac2c15e
free_intermediates in bert ( #9040 )
...
also re-enable dropout and update EVAL_BS
2025-02-12 10:00:39 -05:00
chenyu
a092b6395d
Tuple -> tuple, List -> list [pr] ( #8936 )
2025-02-06 14:21:19 -05:00
chenyu
c7ca7959e6
set DISABLE_DROPOUT=1 in bert script for now ( #8799 )
2025-01-29 10:51:29 -05:00
chenyu
c99ae81f63
update default resnet LOSS_SCALER to 256 [pr] ( #8774 )
2025-01-27 16:59:05 -05:00
chenyu
af65331b76
update beam params for bert green [pr] ( #8726 )
...
increase BEAM_UPCAST_MAX and BEAM_LOCAL_MAX to default and matched red. 3% faster step
2025-01-22 22:00:05 -05:00
chenyu
9a9079118e
envvar BERT_LAYERS [pr] ( #8709 )
...
default is 24 for large
2025-01-21 22:49:19 -05:00
chenyu
9f6d545a16
bert log global_norm in training step [pr] ( #8708 )
...
* bert log global_norm in training step [pr]
and minor cleanups
* .item()
2025-01-21 20:36:27 -05:00
chenyu
1e283c33d3
remove realize in bert model init [pr] ( #8707 )
2025-01-21 14:11:03 -05:00
chenyu
930728c069
bert BS 72->66 [pr] ( #8621 )
...
72 does not fit now
2025-01-14 18:41:41 -05:00
chenyu
994944920b
simpler batch_load_train_bert [pr] ( #8582 )
...
don't think that buffer is really beneficial. 5% faster data_time and 1ms faster per step.
https://wandb.ai/chenyuxyz/MLPerf-BERT/runs/69c9lx8y/overview
2025-01-12 20:25:05 -05:00
chenyu
def90b22f6
EVAL_BS=36 for bert [pr] ( #8576 )
...
3X faster eval compared to BS=6.
green https://wandb.ai/chenyuxyz/MLPerf-BERT/runs/ka5p5sm9/overview
red https://wandb.ai/chenyuxyz/MLPerf-BERT/runs/a7maxsxd/overview
2025-01-12 09:43:56 -05:00
chenyu
64a917b7eb
remove LAZYCACHE ContextVar [pr] ( #8175 )
...
also removed from resnet latest script
2024-12-11 22:02:52 -05:00
chenyu
3e2430f822
use tqdm tqdm in mlperf training ( #7929 )
...
issue in benchmark dashboard logging, revert back to tqdm tqdm for now
2024-11-27 21:57:05 -05:00
qazal
9828277c03
view doesn't have buffer, fix the tests [pr] ( #7841 )
...
* view doesn't have buffer, fix the tests [pr]
* need assigns
2024-11-22 20:41:55 +08:00
Francis Lata
90eff347e2
tinytqdm write support ( #6359 )
...
* add write support
* add test
* update test case to compare write outputs
* assert final write output
* flush when using write
* update write logic
* Revert "update write logic"
This reverts commit 5e0e611b46 .
---------
Co-authored-by: chenyu <chenyu@fastmail.com >
2024-10-16 14:51:41 -04:00
chenyu
ed1ed9e4ff
bert use BS=72 ( #7015 )
...
memory 131 -> 138
green tflops 201 -> 209
red tflops 160 -> 169
2024-10-12 09:41:56 -04:00
chenyu
36056e0760
update mlperf systems and copy 4.1 to 5.0 ( #7004 )
2024-10-11 16:20:34 -04:00
chenyu
0e42662f2a
log seed at the right place for bert ( #7000 )
2024-10-11 10:39:40 -04:00
nimlgen
5496a36536
update red mlperf bert readme ( #6969 )
2024-10-11 13:08:06 +03:00
chenyu
b5546912e2
10% more TRAIN_STEPS for bert ( #6971 )
...
got two very close run, adding more steps for buffer
2024-10-09 19:21:43 -04:00
chenyu
35cf48659b
limit beam param for bert on green ( #6966 )
...
seems to mitigate the crash
2024-10-09 11:48:18 -04:00
chenyu
1ff2c98f8a
fix logfile name for bert red ( #6952 )
2024-10-08 05:37:52 -04:00
chenyu
a78c96273a
update bert epoch logging ( #6940 )
...
* update bert epoch logging
epoch for bert is simply number of examples seen (which is used for RCP check)
* update total steps too
* more changes
2024-10-08 00:34:06 -04:00
chenyu
102dfe5510
back to 2**10 for bert loss scaler ( #6934 )
...
getting 2 NaN for this, revert back to 2**10
2024-10-07 10:17:21 -04:00
chenyu
0cf815a93a
bert use BS=66 and update hparams ( #6932 )
...
with dropout memory improvement, we can fit BS=66 now. revert back to the hparams in #5891 too
2024-10-07 05:08:27 -04:00
chenyu
718b959349
log epoch start and stop for bert ( #6912 )
2024-10-06 06:39:46 -04:00
chenyu
16c1fa4208
use BEAM=3 for red box bert runs ( #6904 )
...
BEAM=4 slightly exceeded 30 minutes setup
2024-10-05 09:21:12 -04:00
chenyu
0e706227a2
add seed to bert result log filename ( #6903 )
...
* add seed to bert result log filename
* different name for different benchmark
2024-10-05 09:15:24 -04:00
chenyu
7391376528
update bert hparams ( #6876 )
...
4h32m with this https://wandb.ai/chenyuxyz/MLPerf-BERT/runs/q99frv1l/overview .
loss scaler 2**13->2**10. matched the closest submission, no nan for ~10 runs.
increased lr and total step a bit.
`PARALLEL=0` after setup, same as resnet.
2024-10-04 00:39:06 -04:00
chenyu
5f77217772
bert default CKPT to 0 ( #6840 )
...
not required
2024-10-01 21:55:56 -04:00
chenyu
f59517754e
add RESET_STEP in bert to control reset ( #6818 )
...
same as resnet
2024-09-30 09:39:04 -04:00
chenyu
494b20e886
bert BS back to 54 ( #6791 )
...
60 does not run end to end
2024-09-27 22:16:05 -04:00
chenyu
572d77d1d9
bert script delete eval data after eval ( #6790 )
...
fits BS=60 which is 2% faster than 54. also fixed wandb logging params
2024-09-27 20:54:00 -04:00
chenyu
f9c8e144ff
chmod +x mlperf bert script for red ( #6789 )
...
also disabled raising power cap in setup. wozeparrot mentioned that's unstable and might cause bert training issue on red
2024-09-27 11:27:32 -04:00
Francis Lata
d3a387be63
[MLPerf] Prepare openimages dataset script ( #6747 )
...
* prepare openimages for MLPerf
* cleanup
* fix issue when clearing jit_cache on retinanet eval
* revert pandas specific changes
2024-09-27 11:13:56 -04:00
chenyu
bea7ed5986
add RUNMLPERF=1 to bert dev_run.sh ( #6775 )
...
already set in run_and_time.sh, need RUNMLPERF=1 for it to load real data
2024-09-26 11:00:49 -04:00
chenyu
12de203a43
add IGNORE_JIT_FIRST_BEAM to bert scripts ( #6769 )
...
* update bert BEAM params
copied from resnet to start with
* just IGNORE_JIT_FIRST_BEAM
2024-09-26 05:38:24 -04:00
chenyu
5a5fbfa1eb
smaller bert script change ( #6768 )
...
only WANDB and RUNMLPERF order. BENCHMARK and BEAM will be done differently
2024-09-26 04:54:28 -04:00