name: Benchmarks env: # TODO: this rescheduling makes gpt2, mixtral and llama unjitted slower # TODO: very slow for llama 70B and resnet training 6 GPU CAPTURE_PROCESS_REPLAY: "1" ASSERT_PROCESS_REPLAY: "0" PYTHONPATH: . GH_TOKEN: ${{ secrets.GITHUB_TOKEN }} on: push: branches: - master - update_benchmark - update_benchmark_staging workflow_dispatch: jobs: testmacbenchmark: name: Mac Benchmark env: # since sudo is required for usbgpu on macos, move the cache to a new location, as some of the files are owned by root PYTHONPYCACHEPREFIX: /tmp/tiny_python_pycache runs-on: [self-hosted, macOS] timeout-minutes: 60 defaults: run: shell: bash -e -o pipefail {0} if: github.repository_owner == 'tinygrad' steps: - name: Checkout Code uses: actions/checkout@v4 - name: Symlink models and datasets run: | mkdir -p weights mkdir -p extra/disassemblers ln -s ~/tinygrad/extra/disassemblers/applegpu extra/disassemblers/applegpu ln -s ~/tinygrad/weights/sd-v1-4.ckpt weights/sd-v1-4.ckpt ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz - name: setup staging db if: github.ref == 'refs/heads/update_benchmark_staging' run: | echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal - name: reset process replay run: python3.11 test/external/process_replay/reset.py - name: Print macOS version run: sw_vers - name: Run Stable Diffusion run: BENCHMARK_LOG=stable_diffusion JIT=1 ASSERT_MIN_STEP_TIME=720 python3.11 examples/stable_diffusion.py --fp16 --seed 0 --noshow --timing - name: Run Stable Diffusion without fp16 run: BENCHMARK_LOG=stable_diffusion_fp32 JIT=1 ASSERT_MIN_STEP_TIME=720 python3.11 examples/stable_diffusion.py --seed 0 --noshow --timing - name: Run Stable Diffusion v2 # TODO: very slow step time run: BENCHMARK_LOG=stable_diffusion_v2 JIT=1 ASSERT_MIN_STEP_TIME=4500 python3.11 examples/sdv2.py --fp16 --seed 0 --noshow --timing # process replay can't capture this, the graph is too large - name: Run SDXL run: BENCHMARK_LOG=stable_diffusion_xl ASSERT_MIN_STEP_TIME=5000 CAPTURE_PROCESS_REPLAY=0 JIT=1 python3.11 examples/sdxl.py --seed 0 --noshow --timing - name: Run model inference benchmark run: METAL=1 NOCLANG=1 python3.11 test/external/external_model_benchmark.py - name: Test speed vs torch run: BIG=2 MPS=1 python3.11 test/speed/external_test_speed_v_torch.py - name: Test tensor cores run: METAL=1 python3.11 test/opt/test_tensor_cores.py - name: Test AMX tensor cores run: | DEBUG=2 CPU=1 CPU_LLVM=0 AMX=1 python3.11 test/opt/test_tensor_cores.py DEBUG=2 CPU=1 CPU_LLVM=1 AMX=1 python3.11 test/opt/test_tensor_cores.py DEBUG=2 CPU=1 CPU_LLVM=0 AMX=1 python3.11 test/opt/test_gen_float4.py TestFloat4.test_float4_multidim_amx TestFloat4.test_float4_multidim_unaligned_load_amx DEBUG=2 CPU=1 CPU_LLVM=1 AMX=1 python3.11 test/opt/test_gen_float4.py TestFloat4.test_float4_multidim_amx TestFloat4.test_float4_multidim_unaligned_load_amx - name: Run Tensor Core GEMM (float) run: DEBUG=2 SHOULD_USE_TC=1 python3.11 extra/gemm/simple_matmul.py - name: Run Tensor Core GEMM (half) run: DEBUG=2 SHOULD_USE_TC=1 HALF=1 python3.11 extra/gemm/simple_matmul.py - name: Run Tensor Core GEMM (bfloat16) run: DEBUG=2 SHOULD_USE_TC=1 BFLOAT16=1 python3.11 extra/gemm/simple_matmul.py - name: Fuzz Padded Tensor Core GEMM run: METAL=1 M_START=6 M_STOP=10 M_STEP=1 N_START=6 N_STOP=10 N_STEP=1 K_START=6 K_STOP=24 K_STEP=1 TC_OPT=2 DEBUG=2 python3.11 ./extra/gemm/fuzz_matmul.py - name: Run LLaMA run: | BENCHMARK_LOG=llama_nojit JIT=0 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing BENCHMARK_LOG=llama JIT=1 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing - name: Run LLaMA with BEAM run: BENCHMARK_LOG=llama_beam JITBEAM=2 IGNORE_BEAM_CACHE=1 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing - name: Run quantized LLaMA run: | BENCHMARK_LOG=llama_int8 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing --quantize int8 BENCHMARK_LOG=llama_nf4 python3.11 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing --quantize nf4 - name: Run quantized LLaMA3 run: | BENCHMARK_LOG=llama3_int8 python3.11 examples/llama3.py --size 8B --temperature 0 --benchmark --quantize int8 BENCHMARK_LOG=llama3_nf4 python3.11 examples/llama3.py --size 8B --temperature 0 --benchmark --quantize nf4 #- name: Run LLaMA 7B on 4 (virtual) GPUs # run: python3.11 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing - name: Run GPT2 run: | BENCHMARK_LOG=gpt2_nojit JIT=0 python3.11 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing BENCHMARK_LOG=gpt2 JIT=1 ASSERT_MIN_STEP_TIME=13 python3.11 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing - name: Run GPT2 w HALF run: BENCHMARK_LOG=gpt2_half HALF=1 python3.11 examples/gpt2.py --count 10 --temperature 0 --timing - name: Run GPT2 w HALF/BEAM run: BENCHMARK_LOG=gpt2_half_beam HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3.11 examples/gpt2.py --count 10 --temperature 0 --timing - name: Run OLMoE run: BENCHMARK_LOG=olmoe python3.11 examples/olmoe.py - name: Train MNIST run: time PYTHONPATH=. TARGET_EVAL_ACC_PCT=96.0 python3.11 examples/beautiful_mnist.py # NOTE: this is failing in CI. it is not failing on my machine and I don't really have a way to debug it # the error is "RuntimeError: Internal Error (0000000e:Internal Error)" #- name: Run 10 CIFAR training steps # run: BENCHMARK_LOG=cifar_10steps JIT=1 ASSERT_MIN_STEP_TIME=3000 STEPS=10 python3.11 examples/hlb_cifar10.py #- name: Run 10 CIFAR training steps w HALF # run: BENCHMARK_LOG=cifar_10steps_half JIT=2 ASSERT_MIN_STEP_TIME=3000 STEPS=10 DEFAULT_FLOAT=HALF python3.11 examples/hlb_cifar10.py #- name: Run 10 CIFAR training steps w BF16 # run: STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3.11 examples/hlb_cifar10.py # TODO: too slow # - name: Run 10 CIFAR training steps w winograd # run: BENCHMARK_LOG=cifar_10steps_wino JIT=1 ASSERT_MIN_STEP_TIME=150 WINO=1 STEPS=10 python3.11 examples/hlb_cifar10.py - uses: actions/upload-artifact@v4 with: name: Speed (Mac) path: | onnx_inference_speed.csv - name: Run process replay tests run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3.11 process_replay.py testusbgpu: name: UsbGPU Benchmark env: PYTHONPYCACHEPREFIX: /tmp/tiny_python_pycache runs-on: [self-hosted, macOS] timeout-minutes: 10 defaults: run: shell: bash -e -o pipefail {0} if: github.repository_owner == 'tinygrad' steps: - name: Checkout Code uses: actions/checkout@v4 - name: setup staging db if: github.ref == 'refs/heads/update_benchmark_staging' run: | echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal - name: UsbGPU boot time run: sudo -E PYTHONPATH=. DEBUG=2 AM_RESET=1 AMD=1 AMD_IFACE=USB time python3.11 test/test_tiny.py TestTiny.test_plus - name: UsbGPU tiny tests run: sudo -E PYTHONPATH=. AMD=1 AMD_IFACE=USB python3.11 test/test_tiny.py - name: UsbGPU copy speeds run: sudo -E PYTHONPATH=. AMD=1 AMD_IFACE=USB python3.11 test/external/external_test_usb_asm24.py TestDevCopySpeeds #- name: UsbGPU openpilot test # run: sudo -E PYTHONPATH=. AMD=1 AMD_IFACE=USB GRAPH_ONE_KERNEL=1 python3.11 examples/openpilot/compile3.py https://github.com/commaai/openpilot/raw/9118973ed03c1ae1d40cf69a29507ec2cc78efd7/selfdrive/modeld/models/supercombo.onnx - name: UsbGPU (USB4/TB) boot time run: PYTHONPATH=. DEBUG=3 NV=1 NV_IFACE=PCI NV_NAK=1 time python3.11 test/test_tiny.py TestTiny.test_plus - name: UsbGPU (USB4/TB) tiny tests run: PYTHONPATH=. NV=1 NV_IFACE=PCI NV_NAK=1 python3.11 test/test_tiny.py testnvidiabenchmark: name: tinybox green Benchmark runs-on: [self-hosted, Linux, tinyboxgreen] timeout-minutes: 60 defaults: run: shell: bash -e -o pipefail {0} if: github.repository_owner == 'tinygrad' steps: - name: Checkout Code uses: actions/checkout@v4 - name: Print nvidia-smi run: nvidia-smi - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 ln -s /raid/weights/LLaMA-3 weights/LLaMA-3 mkdir -p extra/datasets ln -s /raid/datasets/imagenet extra/datasets/imagenet - name: setup staging db if: github.ref == 'refs/heads/update_benchmark_staging' run: | echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal - name: reset process replay run: test/external/process_replay/reset.py - name: Run model inference benchmark run: NV=1 CAPTURE_PROCESS_REPLAY=0 NOCLANG=1 python3 test/external/external_model_benchmark.py - name: Test speed vs torch run: NV=1 CAPTURE_PROCESS_REPLAY=0 HALF=1 BIG=2 TORCHCUDA=1 python3 test/speed/external_test_speed_v_torch.py - name: Test speed vs theoretical run: NV=1 IGNORE_BEAM_CACHE=1 CCACHE=0 BEAM_DEBUG=1 DEBUG=1 python -m pytest -rA test/external/speed_v_theoretical.py --durations=20 - name: Test benchmark allreduce run: NV=1 python test/external/external_benchmark_multitensor_allreduce.py - name: Test tensor cores run: | NV=1 ALLOW_TF32=1 python3 test/opt/test_tensor_cores.py NV=1 NV_PTX=1 ALLOW_TF32=1 python3 test/opt/test_tensor_cores.py - name: Run Tensor Core GEMM (CUDA) run: | CUDA=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py CUDA=1 SHOULD_USE_TC=1 BFLOAT16=1 DEBUG=2 python3 extra/gemm/simple_matmul.py CUDA=1 SHOULD_USE_TC=1 ALLOW_TF32=1 DEBUG=2 ATOL=2e-2 python3 extra/gemm/simple_matmul.py CUDA=1 SHOULD_USE_TC=1 FP8E4M3=1 DEBUG=2 python3 extra/gemm/simple_matmul.py - name: Run Tensor Core GEMM (PTX) run: NV=1 NV_PTX=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py - name: Run Tensor Core GEMM (NV) run: NV=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py - name: Test NV=1 run: DEBUG=2 NV=1 python -m pytest -rA test/test_tiny.py - name: Test CUDA=1 run: DEBUG=2 CUDA=1 python -m pytest -rA test/test_tiny.py - name: Run Stable Diffusion run: BENCHMARK_LOG=stable_diffusion NV=1 python3 examples/stable_diffusion.py --fp16 --seed 0 --noshow --timing # TODO: too slow # - name: Run SDXL # run: BENCHMARK_LOG=stable_diffusion_xl ASSERT_MIN_STEP_TIME=2000 CAPTURE_PROCESS_REPLAY=0 NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/sdxl.py --seed 0 --noshow --timing - name: Run LLaMA run: | BENCHMARK_LOG=llama_nojit NV=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing BENCHMARK_LOG=llama NV=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing - name: Run LLaMA with BEAM run: BENCHMARK_LOG=llama_beam NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing # - name: Run LLaMA 7B on 4 GPUs # run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing # - name: Run LLaMA 7B on 6 GPUs # run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing - name: Run LLaMA-3 8B BEAM run: BENCHMARK_LOG=llama3_beam NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --size 8B --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 - name: Run LLaMA-3 8B on 4 GPUs with BEAM run: BENCHMARK_LOG=llama3_beam_4gpu NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 - name: Run quantized LLaMA3 run: BENCHMARK_LOG=llama3_fp8 python3 examples/llama3.py --size 8B --model weights/LLaMA-3/8B-SF-DPO/ --temperature 0 --benchmark --quantize fp8 # - name: Run LLaMA-3 8B on 6 GPUs # run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 # - name: Run LLaMA-2 70B # run: NV=1 CAPTURE_PROCESS_REPLAY=0 MAX_CONTEXT=256 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing - name: Run Mixtral 8x7B run: time BENCHMARK_LOG=mixtral NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/mixtral.py --temperature 0 --count 10 --timing - name: Run GPT2 run: | BENCHMARK_LOG=gpt2_nojit NV=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing BENCHMARK_LOG=gpt2 NV=1 JIT=1 ASSERT_MIN_STEP_TIME=4 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing - name: Run GPT2 w HALF run: BENCHMARK_LOG=gpt2_half NV=1 HALF=1 ASSERT_MIN_STEP_TIME=6 python3 examples/gpt2.py --count 10 --temperature 0 --timing - name: Run GPT2 w HALF/BEAM run: BENCHMARK_LOG=gpt2_half_beam NV=1 HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing - uses: actions/upload-artifact@v4 with: name: Speed (NVIDIA) path: | onnx_inference_speed.csv - name: Run process replay tests run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py testmorenvidiabenchmark: name: tinybox green Training Benchmark runs-on: [self-hosted, Linux, tinyboxgreen] timeout-minutes: 60 defaults: run: shell: bash -e -o pipefail {0} if: github.repository_owner == 'tinygrad' steps: - name: Checkout Code uses: actions/checkout@v4 - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 mkdir -p extra/datasets ln -s /raid/datasets/imagenet extra/datasets/imagenet - name: setup staging db if: github.ref == 'refs/heads/update_benchmark_staging' run: | echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal - name: reset process replay run: test/external/process_replay/reset.py # TODO: too slow # - name: Fuzz Padded Tensor Core GEMM (NV) # run: NV=1 M_START=12 M_STOP=20 M_STEP=1 N_START=6 N_STOP=10 N_STEP=1 K_START=28 K_STOP=36 K_STEP=1 HALF=1 TC_OPT=2 python3 ./extra/gemm/fuzz_matmul.py # TODO: too slow # - name: Fuzz Padded Tensor Core GEMM (PTX) # run: NV=1 NV_PTX=1 M_START=12 M_STOP=20 M_STEP=1 N_START=6 N_STOP=10 N_STEP=1 K_START=28 K_STOP=36 K_STEP=1 HALF=1 TC_OPT=2 python3 ./extra/gemm/fuzz_matmul.py - name: HEVC Decode Benchmark run: VALIDATE=1 MAX_FRAMES=100 JITBEAM=1 NV=1 PYTHONPATH=. python3 extra/hevc/decode.py - name: Train MNIST run: time PYTHONPATH=. NV=1 TARGET_EVAL_ACC_PCT=96.0 python3 examples/beautiful_mnist.py - name: Run 10 CIFAR training steps run: BENCHMARK_LOG=cifar_10steps ASSERT_MIN_STEP_TIME=120 NV=1 STEPS=10 python3 examples/hlb_cifar10.py - name: Run 10 CIFAR training steps w HALF run: BENCHMARK_LOG=cifar_10steps_half ASSERT_MIN_STEP_TIME=110 NV=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py - name: Run 10 CIFAR training steps w BF16 run: BENCHMARK_LOG=cifar_10steps_bf16 ASSERT_MIN_STEP_TIME=120 NV=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py # - name: Run 10 CIFAR training steps w winograd # run: BENCHMARK_LOG=cifar_10steps_half_wino ASSERT_MIN_STEP_TIME=350 NV=1 WINO=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py - name: Run full CIFAR training w 1 GPU run: time BENCHMARK_LOG=cifar NV=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py - name: Run full CIFAR training steps w 6 GPUS run: time BENCHMARK_LOG=cifar_6gpu CAPTURE_PROCESS_REPLAY=0 NV=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py - name: Run MLPerf resnet eval on training data run: time BENCHMARK_LOG=resnet_eval NV=1 MODEL=resnet python3 examples/mlperf/model_eval.py - name: Run 10 MLPerf ResNet50 training steps (1 gpu) run: BENCHMARK_LOG=resnet_10steps NV=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py - name: Run 10 MLPerf ResNet50 training steps (6 gpu) run: BENCHMARK_LOG=resnet_10steps_6gpu NV=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py - name: Run 10 MLPerf Bert training steps (6 gpu) # TODO: remove BERT_LAYERS once scheduler is fast run: BENCHMARK_LOG=bert_10steps_6gpu NV=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=72 GPUS=6 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py - name: Run process replay tests run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py testamdbenchmark: name: tinybox red Benchmark runs-on: [self-hosted, Linux, tinybox] timeout-minutes: 60 defaults: run: shell: bash -e -o pipefail {0} if: github.repository_owner == 'tinygrad' steps: - name: Checkout Code uses: actions/checkout@v4 - name: Remove amdgpu run: sudo rmmod amdgpu || true - name: Cleanup running AM processes run: python extra/amdpci/am_smi.py --pids --kill #- name: Insert amdgpu # run: sudo modprobe amdgpu - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 ln -s /raid/weights/LLaMA-3 weights/LLaMA-3 mkdir -p extra/datasets ln -s /raid/datasets/imagenet extra/datasets/imagenet - name: setup staging db if: github.ref == 'refs/heads/update_benchmark_staging' run: | echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal - name: reset process replay run: test/external/process_replay/reset.py #- name: setup perflevel # run: | # examples/mlperf/training_submission_v4.1/tinycorp/benchmarks/bert/implementations/tinybox_red/setup.sh # rocm-smi #- name: Show off tinybox # run: /opt/rocm/bin/rocm-bandwidth-test # TODO: unstable on AMD #- name: Run model inference benchmark # run: LD_PRELOAD="/opt/rocm/lib/libhsa-runtime64.so" HSA=1 NOCLANG=1 python3 test/external/external_model_benchmark.py # TODO: unstable on AMD #- name: Test speed vs torch # run: | # python3 -c "import torch; print(torch.__version__)" # LD_PRELOAD="/opt/rocm/lib/libhsa-runtime64.so" HSA=1 BIG=2 TORCHCUDA=1 python3 test/speed/external_test_speed_v_torch.py - name: Test speed vs theoretical run: AMD=1 IGNORE_BEAM_CACHE=1 CCACHE=0 BEAM_DEBUG=1 DEBUG=1 python -m pytest -rA test/external/speed_v_theoretical.py --durations=20 - name: Test tensor cores AMD_LLVM=0 run: AMD=1 AMD_LLVM=0 python3 test/opt/test_tensor_cores.py # TODO: this is flaky # - name: Test tensor cores AMD_LLVM=1 # run: AMD=1 AMD_LLVM=1 python3 test/opt/test_tensor_cores.py - name: Run Tensor Core GEMM (AMD) run: | AMD=1 SHOULD_USE_TC=1 BFLOAT16=1 DEBUG=2 python3 extra/gemm/simple_matmul.py AMD=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 ATOL=2e-2 python3 extra/gemm/simple_matmul.py - name: Test AMD=1 run: DEBUG=2 AMD=1 python -m pytest -rA test/test_tiny.py #- name: Test HIP=1 # run: DEBUG=2 HIP=1 python -m pytest -rA test/test_tiny.py # TODO: AMD compiler bug causes this to fail #- name: Fuzz Padded Tensor Core GEMM # run: HSA=1 M_START=12 M_STOP=20 M_STEP=1 N_START=12 N_STOP=20 N_STEP=1 K_START=28 K_STOP=36 K_STEP=1 HALF=1 TC_OPT=2 DEBUG=2 python3 ./extra/gemm/fuzz_matmul.py #- name: Remove amdgpu # run: sleep 10 && sudo rmmod amdgpu # sleep a bit to let the driver unload the prev pid. - name: Test AM cold start time run: time AMD=1 AM_RESET=1 python3 test/test_tiny.py TestTiny.test_plus - name: Test AM warm start time run: time AMD=1 python3 test/test_tiny.py TestTiny.test_plus - name: Run Stable Diffusion run: BENCHMARK_LOG=stable_diffusion ASSERT_MIN_STEP_TIME=550 AMD=1 python3 examples/stable_diffusion.py --fp16 --seed 0 --noshow --timing - name: Run SDXL run: BENCHMARK_LOG=stable_diffusion_xl ASSERT_MIN_STEP_TIME=3200 CAPTURE_PROCESS_REPLAY=0 AMD=1 python3 examples/sdxl.py --seed 0 --noshow --timing - name: Run LLaMA 7B run: | BENCHMARK_LOG=llama_nojit AMD=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing BENCHMARK_LOG=llama AMD=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing - name: Run LLaMA 7B with BEAM run: BENCHMARK_LOG=llama_beam AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing # - name: Run LLaMA 7B on 4 GPUs # run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing # - name: Run LLaMA 7B on 6 GPUs # run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing - name: Run LLaMA-3 8B BEAM run: BENCHMARK_LOG=llama3_beam AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --size 8B --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 - name: Run LLaMA-3 8B on 4 GPUs with BEAM run: BENCHMARK_LOG=llama3_beam_4gpu AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 # - name: Run LLaMA-3 8B on 6 GPUs # run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 #- name: Restore amdgpu # run: sudo modprobe amdgpu # - name: Run LLaMA-2 70B # run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing - name: Run Mixtral 8x7B run: time BENCHMARK_LOG=mixtral AMD=1 python3 examples/mixtral.py --temperature 0 --count 10 --timing - name: Run GPT2 run: | BENCHMARK_LOG=gpt2_nojit AMD=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing BENCHMARK_LOG=gpt2 AMD=1 JIT=1 ASSERT_MIN_STEP_TIME=5 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing - name: Run GPT2 w HALF run: BENCHMARK_LOG=gpt2_half AMD=1 HALF=1 ASSERT_MIN_STEP_TIME=5 python3 examples/gpt2.py --count 10 --temperature 0 --timing - name: Run GPT2 w HALF/BEAM run: BENCHMARK_LOG=gpt2_half_beam AMD=1 HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing - name: Run process replay tests run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py testmoreamdbenchmark: name: tinybox red Training Benchmark runs-on: [self-hosted, Linux, tinybox] timeout-minutes: 60 defaults: run: shell: bash -e -o pipefail {0} if: github.repository_owner == 'tinygrad' steps: - name: Checkout Code uses: actions/checkout@v4 - name: Remove amdgpu run: sudo rmmod amdgpu || true - name: Cleanup running AM processes run: python extra/amdpci/am_smi.py --pids --kill - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 mkdir -p extra/datasets ln -s /raid/datasets/imagenet extra/datasets/imagenet - name: setup staging db if: github.ref == 'refs/heads/update_benchmark_staging' run: | echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal - name: reset process replay run: test/external/process_replay/reset.py - name: Train MNIST run: time PYTHONPATH=. AMD=1 TARGET_EVAL_ACC_PCT=96.0 python3 examples/beautiful_mnist.py - name: Run 10 CIFAR training steps run: BENCHMARK_LOG=cifar_10steps ASSERT_MIN_STEP_TIME=200 AMD=1 STEPS=10 python3 examples/hlb_cifar10.py - name: Run 10 CIFAR training steps w HALF run: BENCHMARK_LOG=cifar_10steps_half ASSERT_MIN_STEP_TIME=200 AMD=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py # - name: Run 10 CIFAR training steps w BF16 # run: BENCHMARK_LOG=cifar_10steps_bf16 ASSERT_MIN_STEP_TIME=288 AMD=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py # TODO: too slow # - name: Run 10 CIFAR training steps w winograd # run: BENCHMARK_LOG=cifar_10steps_half_wino ASSERT_MIN_STEP_TIME=66 AMD=1 WINO=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py - name: Run full CIFAR training w 1 GPU run: time BENCHMARK_LOG=cifar AMD=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py - name: Run full CIFAR training steps w 6 GPUS run: time BENCHMARK_LOG=cifar_6gpu AMD=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py - name: Run process replay tests run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py testmlperfamdbenchmark: name: tinybox red MLPerf Benchmark runs-on: [self-hosted, Linux, tinybox] timeout-minutes: 60 defaults: run: shell: bash -e -o pipefail {0} if: github.repository_owner == 'tinygrad' steps: - name: Checkout Code uses: actions/checkout@v4 - name: Remove amdgpu run: sudo rmmod amdgpu || true - name: Cleanup running AM processes run: python extra/amdpci/am_smi.py --pids --kill - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 mkdir -p extra/datasets ln -s /raid/datasets/imagenet extra/datasets/imagenet - name: setup staging db if: github.ref == 'refs/heads/update_benchmark_staging' run: | echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal - name: reset process replay run: test/external/process_replay/reset.py - name: Run MLPerf resnet eval run: time BENCHMARK_LOG=resnet_eval AMD=1 MODEL=resnet python3 examples/mlperf/model_eval.py - name: Run 10 MLPerf ResNet50 training steps (1 gpu) run: BENCHMARK_LOG=resnet_10steps AMD=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py - name: Run 10 MLPerf ResNet50 training steps (6 gpu) run: BENCHMARK_LOG=resnet_10steps_6gpu AMD=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py - name: Run 10 MLPerf Bert training steps (6 gpu) # TODO: remove BERT_LAYERS once scheduler is fast run: BENCHMARK_LOG=bert_10steps_6gpu AMD=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=72 GPUS=6 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py - name: Run process replay tests run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py testqualcommbenchmark: name: comma Benchmark runs-on: [self-hosted, Linux, comma] timeout-minutes: 20 defaults: run: shell: bash -e -o pipefail {0} if: github.repository_owner == 'tinygrad' steps: - name: Checkout Code uses: actions/checkout@v4 - name: setup staging db if: github.ref == 'refs/heads/update_benchmark_staging' run: | echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal - name: reset process replay run: test/external/process_replay/reset.py - name: openpilot compile3 0.10.0 driving_policy run: BENCHMARK_LOG=openpilot_0_10_0_policy PYTHONPATH="." ASSERT_MIN_STEP_TIME=4 DEV=QCOM FLOAT16=1 IMAGE=2 NOLOCALS=1 taskset -c 4-7 python3 examples/openpilot/compile3.py https://github.com/commaai/openpilot/raw/v0.10.0/selfdrive/modeld/models/driving_policy.onnx - name: openpilot compile3 0.10.0 dmonitoring run: BENCHMARK_LOG=openpilot_0_10_0_dmonitoring PYTHONPATH="." ASSERT_MIN_STEP_TIME=11 DEV=QCOM FLOAT16=1 IMAGE=2 NOLOCALS=1 taskset -c 4-7 python3 examples/openpilot/compile3.py https://github.com/commaai/openpilot/raw/v0.10.0/selfdrive/modeld/models/dmonitoring_model.onnx - name: DEBUG=2 openpilot compile3 0.10.1 driving_vision run: PYTHONPATH="." DEBUG=2 DEV=QCOM FLOAT16=1 IMAGE=2 NOLOCALS=1 taskset -c 4-7 python3 examples/openpilot/compile3.py https://github.com/commaai/openpilot/raw/720392c9a5b986981fdbed1bb8c47a6c5573a50e/selfdrive/modeld/models/driving_vision.onnx - name: DEBUG=2 IMAGE=1 openpilot compile3 0.10.1 driving_vision run: PYTHONPATH="." DEBUG=2 DEV=QCOM FLOAT16=1 IMAGE=1 NOLOCALS=1 taskset -c 4-7 python3 examples/openpilot/compile3.py https://github.com/commaai/openpilot/raw/720392c9a5b986981fdbed1bb8c47a6c5573a50e/selfdrive/modeld/models/driving_vision.onnx - name: IMAGE=1 openpilot compile3 0.10.1 driving_vision run: BENCHMARK_LOG=image_1_openpilot_0_10_1_vision PYTHONPATH="." DEV=QCOM FLOAT16=1 IMAGE=1 NOLOCALS=1 taskset -c 4-7 python3 examples/openpilot/compile3.py https://github.com/commaai/openpilot/raw/720392c9a5b986981fdbed1bb8c47a6c5573a50e/selfdrive/modeld/models/driving_vision.onnx - name: openpilot compile3 0.10.1 driving_vision run: BENCHMARK_LOG=openpilot_0_10_1_vision PYTHONPATH="." ASSERT_MIN_STEP_TIME=17 DEV=QCOM FLOAT16=1 IMAGE=2 NOLOCALS=1 taskset -c 4-7 python3 examples/openpilot/compile3.py https://github.com/commaai/openpilot/raw/720392c9a5b986981fdbed1bb8c47a6c5573a50e/selfdrive/modeld/models/driving_vision.onnx - name: openpilot compile3 0.10.1 driving_policy run: BENCHMARK_LOG=openpilot_0_10_1_policy PYTHONPATH="." ASSERT_MIN_STEP_TIME=4 DEV=QCOM FLOAT16=1 IMAGE=2 NOLOCALS=1 taskset -c 4-7 python3 examples/openpilot/compile3.py https://github.com/commaai/openpilot/raw/720392c9a5b986981fdbed1bb8c47a6c5573a50e/selfdrive/modeld/models/driving_policy.onnx - name: openpilot compile3 0.10.1 dmonitoring run: BENCHMARK_LOG=openpilot_0_10_1_dmonitoring PYTHONPATH="." ASSERT_MIN_STEP_TIME=10 DEV=QCOM FLOAT16=1 IMAGE=2 NOLOCALS=1 taskset -c 4-7 python3 examples/openpilot/compile3.py https://github.com/commaai/openpilot/raw/720392c9a5b986981fdbed1bb8c47a6c5573a50e/selfdrive/modeld/models/dmonitoring_model.onnx - name: benchmark MobileNetV2 on DSP run: | # generate quantized weights ln -s /data/home/tiny/tinygrad/extra/datasets/imagenet extra/datasets/imagenet ln -s /data/home/tiny/tinygrad/testsig-*.so . PYTHONPATH=. CC=clang-19 CPU=1 CPU_LLVM=0 QUANT=1 CNT=0 python3 examples/test_onnx_imagenet.py https://github.com/xamcat/mobcat-samples/raw/refs/heads/master/onnx_runtime/InferencingSample/InferencingSample/mobilenetv2-7.onnx /tmp/model.quant.onnx # benchmark on DSP with NOOPT=1, the devectorizer has issues PYTHONPATH=. CC=clang-19 DSP=1 NOOPT=1 CNT=2 DEBUG=2 python3 examples/test_onnx_imagenet.py /tmp/model.quant.onnx - name: Run process replay tests run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py testreddriverbenchmark: name: AM Benchmark runs-on: [self-hosted, Linux, tinyboxrandom] timeout-minutes: 20 defaults: run: shell: bash -e -o pipefail {0} if: github.repository_owner == 'tinygrad' steps: - name: Checkout Code uses: actions/checkout@v4 - name: Remove amd modules run: ./extra/hcq/hcq_smi.py amd rmmod - name: Kill stale pids run: ./extra/hcq/hcq_smi.py amd kill_pids - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 mkdir -p extra/datasets ln -s /raid/datasets/imagenet extra/datasets/imagenet - name: setup staging db if: github.ref == 'refs/heads/update_benchmark_staging' run: | echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal - name: reset process replay run: test/external/process_replay/reset.py - name: Test driver cold start time run: time DEBUG=3 AMD=1 AM_RESET=1 python3 test/test_tiny.py TestTiny.test_plus - name: Test driver warm start time run: time DEBUG=3 AMD=1 python3 test/test_tiny.py TestTiny.test_plus # Fails on 9070 # - name: Test tensor cores # run: | # AMD=1 AMD_LLVM=0 python3 test/test_linearizer.py test/opt/test_tensor_cores.py # AMD=1 AMD_LLVM=1 python3 test/test_linearizer.py test/opt/test_tensor_cores.py # AMD=1 SHOULD_USE_TC=1 BFLOAT16=1 DEBUG=2 python3 extra/gemm/simple_matmul.py - name: Run Tensor Core GEMM (AMD) run: AMD=1 SHOULD_USE_TC=1 HALF=1 DEBUG=2 ATOL=2e-2 python3 extra/gemm/simple_matmul.py - name: Test AMD=1 run: DEBUG=2 AMD=1 python -m pytest -rA test/test_tiny.py - name: Test DISK copy time run: AMD=1 TESTFILE=/raid/downloads/llama3-8b-sfr/model-00001-of-00004.safetensors python3 test/external/external_benchmark_disk_raw.py - name: Test CPU copy time run: | AMD=1 GRAPH_ONE_KERNEL=1 PYTHONPATH=. NSZ=8192 python3 test/speed/external_test_copy_speed.py TestCopySpeed.testCopyDefaulttoCPUJit AMD=1 GRAPH_ONE_KERNEL=1 PYTHONPATH=. NSZ=8192 python3 test/speed/external_test_copy_speed.py TestCopySpeed.testCopyCPUtoDefaultJit - name: Run full CIFAR training w 1 GPU run: time BENCHMARK_LOG=cifar AMD=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py # - name: Run 10 MLPerf ResNet50 training steps (1 gpu) # run: BENCHMARK_LOG=resnet_10steps AMD=1 MNISTMOCK=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py - name: Run 10 MLPerf Bert training steps (1 gpu) # TODO: remove BERT_LAYERS once scheduler is fast run: BENCHMARK_LOG=bert_10steps AMD=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=66 GPUS=1 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py - name: Run process replay tests run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py testgreendriverbenchmark: name: NV Benchmark runs-on: [self-hosted, Linux, tinyboxrandom] timeout-minutes: 20 defaults: run: shell: bash -e -o pipefail {0} if: github.repository_owner == 'tinygrad' steps: - name: Checkout Code uses: actions/checkout@v4 - name: Remove nv modules run: ./extra/hcq/hcq_smi.py nv rmmod - name: Kill stale pids run: ./extra/hcq/hcq_smi.py nv kill_pids - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 mkdir -p extra/datasets ln -s /raid/datasets/imagenet extra/datasets/imagenet - name: setup staging db if: github.ref == 'refs/heads/update_benchmark_staging' run: | echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal - name: reset process replay run: test/external/process_replay/reset.py - name: Test driver start time run: time DEBUG=3 NV=1 python3 test/test_tiny.py TestTiny.test_plus - name: Test tensor cores run: NV=1 ALLOW_TF32=1 python3 test/opt/test_tensor_cores.py - name: Test DISK copy time run: NV=1 TESTFILE=/raid/downloads/llama3-8b-sfr/model-00001-of-00004.safetensors python3 test/external/external_benchmark_disk_raw.py - name: Test CPU copy time run: | NV=1 GRAPH_ONE_KERNEL=1 PYTHONPATH=. NSZ=8192 python3 test/speed/external_test_copy_speed.py TestCopySpeed.testCopyDefaulttoCPUJit NV=1 GRAPH_ONE_KERNEL=1 PYTHONPATH=. NSZ=8192 python3 test/speed/external_test_copy_speed.py TestCopySpeed.testCopyCPUtoDefaultJit - name: Test LLAMA-3 run: BENCHMARK_LOG=llama3_beam NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --size 8B --benchmark --temperature 0 - name: Run full CIFAR training w 1 GPU run: time BENCHMARK_LOG=cifar NV=1 DEFAULT_FLOAT=HALF STEPS=1000 TARGET_EVAL_ACC_PCT=93.0 python3 examples/hlb_cifar10.py - name: Run 10 MLPerf ResNet50 training steps (1 gpu) run: BENCHMARK_LOG=resnet_10steps NV=1 MNISTMOCK=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py - name: Run 10 MLPerf Bert training steps (1 gpu) # TODO: remove BERT_LAYERS once scheduler is fast run: BENCHMARK_LOG=bert_10steps NV=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=66 GPUS=1 BERT_LAYERS=2 MODEL=bert python3 examples/mlperf/model_train.py - name: Run process replay tests run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py