import itertools from typing import Callable from tinygrad import nn, Tensor, dtypes, Device, TinyJit from tinygrad.helpers import getenv, trange, partition class Model: def __init__(self): self.layers: list[Callable[[Tensor], Tensor]] = [ nn.Conv2d(1, 32, 5), Tensor.relu, nn.Conv2d(32, 32, 5), Tensor.relu, nn.BatchNorm(32), Tensor.max_pool2d, nn.Conv2d(32, 64, 3), Tensor.relu, nn.Conv2d(64, 64, 3), Tensor.relu, nn.BatchNorm(64), Tensor.max_pool2d, lambda x: x.flatten(1), nn.Linear(576, 10)] def __call__(self, x:Tensor) -> Tensor: return x.sequential(self.layers) # TODO: refactor this into optim/onnx def functional_adam(g:Tensor, m:Tensor, v:Tensor, b1_t:Tensor, b2_t:Tensor, lr=0.001, b1=0.9, b2=0.999, eps=1e-6) -> Tensor: b1_t *= b1 b2_t *= b2 m.assign(b1 * m + (1.0 - b1) * g) v.assign(b2 * v + (1.0 - b2) * (g * g)) m_hat = m / (1.0 - b1_t) v_hat = v / (1.0 - b2_t) return lr * (m_hat / (v_hat.sqrt() + eps)) if __name__ == "__main__": BS = getenv("BS", 512) ACC_STEPS = getenv("ACC_STEPS", 8) X_train, Y_train, X_test, Y_test = nn.datasets.mnist() model = Model() params = nn.state.get_parameters(model) # init params, set requires grad on the ones we need gradients of for x in params: if x.requires_grad is None: x.requires_grad_() x.replace(x.contiguous()) Tensor.realize(*params) # split params (with grads) and buffers (without) params, buffers = partition(params, lambda x: x.requires_grad) print(f"params: {len(params)} buffers: {len(buffers)}") # optim params pos_params = list(itertools.accumulate(params, lambda x,y: x+y.numel(), initial=0)) adam_m = Tensor.zeros(pos_params[-1], device="CPU").contiguous() adam_v = Tensor.zeros(pos_params[-1], device="CPU").contiguous() adam_b1_t = Tensor.ones((1,), dtype=dtypes.float32, device="CPU", requires_grad=False).contiguous() adam_b2_t = Tensor.ones((1,), dtype=dtypes.float32, device="CPU", requires_grad=False).contiguous() adam_params = [adam_m, adam_v, adam_b1_t, adam_b2_t] # create loss and grads. init all state so the JIT works on microbatch for x in params: x.assign(x.detach()) loss = Tensor.zeros(tuple()).contiguous() grads = Tensor.zeros(pos_params[-1]).contiguous() Tensor.realize(*params, *buffers, *adam_params, loss, grads) @TinyJit @Tensor.train() def microbatch(): samples = Tensor.randint(BS // ACC_STEPS, high=X_train.shape[0]) for t in params: t.grad = None # divide by ACC_STEPS at the loss uloss = (model(X_train[samples]).sparse_categorical_crossentropy(Y_train[samples]) / ACC_STEPS).backward() ugrads = Tensor.cat(*[t.grad.contiguous().flatten() for t in params], dim=0) for t in params: t.grad = None # concat the grads and assign them loss.assign(loss + uloss) grads.assign(grads + ugrads) Tensor.realize(*params, *buffers, loss, grads) @TinyJit def optimizer(): # run optimizer (on CPU, where adam params live) delta = functional_adam(grads.to("CPU"), adam_m, adam_v, adam_b1_t, adam_b2_t) # update the params, copying back the delta one at a time to avoid OOM # NOTE: the scheduler is ordering things poorly, all the copies are happening before the adds for j,tt in enumerate(params): tt.assign(tt.detach() - delta[pos_params[j]:pos_params[j+1]].reshape(tt.shape).to(Device.DEFAULT)) # realize everything, zero out loss and grads loss.assign(Tensor.zeros_like(loss)) grads.assign(Tensor.zeros_like(grads)) Tensor.realize(*params, *adam_params, loss, grads) @TinyJit def get_test_acc() -> Tensor: return (model(X_test).argmax(axis=1) == Y_test).mean()*100 test_acc = float('nan') for i in (t:=trange(getenv("STEPS", 70))): # microbatch sets the gradients for _ in range(ACC_STEPS): microbatch() # get the loss before the optimizer clears it # this is already realized so this isn't a schedule loss_item = loss.item() # run the optimizer optimizer() # eval if i%10 == 9: test_acc = get_test_acc().item() t.set_description(f"loss: {loss_item:6.2f} test_accuracy: {test_acc:5.2f}%")