import argparse, os, hashlib from tinygrad.helpers import getenv, DEBUG, round_up, Timing, tqdm, fetch from extra.hevc.hevc import parse_hevc_file_headers, untile_nv12, to_bgr, nv_gpu from tinygrad import Tensor, dtypes, Device, Variable, TinyJit if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--input_file", type=str, default="") parser.add_argument("--output_dir", type=str, default="extra/hevc/out") args = parser.parse_args() if args.input_file == "": url = "https://github.com/haraschax/filedump/raw/09a497959f7fa6fd8dba501a25f2cdb3a41ecb12/comma_video.hevc" hevc_tensor = Tensor.from_url(url, device="CPU") else: hevc_tensor = Tensor.empty(os.stat(args.input_file).st_size, dtype=dtypes.uint8, device=f"disk:{args.input_file}").to("CPU") dat = bytes(hevc_tensor.data()) dat_hash = hashlib.md5(dat).hexdigest() with Timing("prep infos: "): dat_nv = hevc_tensor.to("NV") opaque, frame_info, w, h, luma_w, luma_h, chroma_off = parse_hevc_file_headers(dat) frame_info = frame_info[:getenv("MAX_FRAMES", len(frame_info))] # move all needed data to gpu #all_slices = [] with Timing("copy to gpu: "): opaque_nv = opaque.to("NV").contiguous().realize() hevc_tensor = hevc_tensor.to("NV") out_image_size = luma_h + (luma_h + 1) // 2, round_up(luma_w, 64) max_hist = max(history_sz for _, _, _, history_sz, _ in frame_info) # define variables v_pos = Variable("pos", 0, max_hist + 1) v_offset = Variable("offset", 0, hevc_tensor.numel()-1) v_sz = Variable("sz", 0, hevc_tensor.numel()) v_i = Variable("i", 0, len(frame_info)-1) @TinyJit def decode_jit(pos:Variable, src:Tensor, data:Tensor, *hist:Tensor): return src.decode_hevc_frame(pos, out_image_size, data, hist).realize() # warm up history = [Tensor.empty(*out_image_size, dtype=dtypes.uint8, device="NV") for _ in range(max_hist)] for i in range(3): hevc_frame = hevc_tensor.shrink((((bound_offset:=v_offset.bind(frame_info[0][0])), bound_offset+v_sz.bind(frame_info[0][1])),)) decode_jit(v_pos.bind(0), hevc_frame, opaque_nv[v_i.bind(0)], *history) out_images = [] with Timing("decoding whole file: ", on_exit=(lambda et: f", {len(frame_info)} frames, {len(frame_info)/(et/1e9):.2f} fps")): for i, (offset, sz, frame_pos, history_sz, is_hist) in enumerate(frame_info): history = history[-max_hist:] if max_hist > 0 else [] # TODO: this shrink should work as a slice hevc_frame = hevc_tensor.shrink((((bound_offset:=v_offset.bind(offset)), bound_offset+v_sz.bind(sz)),)) outimg = decode_jit(v_pos.bind(frame_pos), hevc_frame, opaque_nv[v_i.bind(i)], *history).clone() out_images.append(outimg) if is_hist: history.append(outimg) Device.default.synchronize() if getenv("VALIDATE", 0): import pickle if dat_hash == "b813bfdbec194fd17fdf0e3ceb8cea1c": url = "https://github.com/nimlgen/hevc_validate_set/raw/refs/heads/main/decoded_frames_b813bfdbec194fd17fdf0e3ceb8cea1c.pkl" decoded_frames = pickle.load(fetch(url).open("rb")) else: decoded_frames = pickle.load(open(f"extra/hevc/decoded_frames_{dat_hash}.pkl", "rb")) else: import cv2 for i, img in tqdm(enumerate(out_images)): if getenv("VALIDATE", 0): if i < len(decoded_frames) and len(decoded_frames[i]) > 0: img = untile_nv12(img, h, w, luma_w, chroma_off).realize() assert img.data() == decoded_frames[i], f"Frame {i} does not match reference decoder!" print(f"Frame {i} matches reference decoder!") else: if len(args.output_dir): os.makedirs(args.output_dir, exist_ok=True) img = to_bgr(img, h, w, luma_w, chroma_off).realize() cv2.imwrite(f"{args.output_dir}/out_frame_{i:04d}.png", img.numpy())