import unittest import numpy as np from tinygrad import Tensor, UOp, nn from tinygrad.uop.ops import AxisType, Ops class TestOuterworldReduce(unittest.TestCase): def test_reduce(self): x = Tensor.ones(5, 5).contiguous() a = UOp.range(5, -1, AxisType.REDUCE) out = x[a] # TODO: syntax for this t = Tensor(UOp(Ops.REDUCE, dtype=out.uop.dtype, src=(out.uop, a), arg=Ops.ADD)) self.assertListEqual(t.tolist(), [5.,5.,5.,5.,5.]) # TODO: delete test_outerworld_range? class TestOuterRange(unittest.TestCase): def test_simple_range(self): a = Tensor.ones(10).contiguous() acc = Tensor.zeros().contiguous() Tensor.realize(a, acc) # this is fold i = UOp.range(10, -100, AxisType.OUTER) acc_i = acc.uop.after(i) vi = UOp.variable("i", i.vmin, i.vmax).bind(i) out = Tensor(acc.uop.after(acc_i.store(acc_i + a[vi].uop).end(i))) out.realize() assert out.item() == 10.0 def test_inner_range(self): a = Tensor.ones(10, 10).contiguous() acc = Tensor.zeros(10).contiguous() Tensor.realize(a, acc) # this is fold i = UOp.range(10, -100, AxisType.OUTER) acc_i = acc.uop.after(i) vi = UOp.variable("i", i.vmin, i.vmax).bind(i) out = Tensor(acc.uop.after(acc_i.store(acc_i + a[:, vi].uop).end(i))) out.realize() assert all(x == 10.0 for x in out.tolist()) def test_range_matmul(self): vec = Tensor.randn(1, 10).realize() mats = Tensor.randn(3, 10, 10).realize() # 3 matmuls in "scan" ref = ((vec @ mats[0]) @ mats[1]) @ mats[2] ref.realize() # 3 matmuls with outer world range i = UOp.range(3, -100, AxisType.OUTER) vec_i = Tensor(vec.uop.after(i)) comp = vec_i.contiguous() @ mats[i] store = vec_i.uop.store(comp.uop).end(i) out = Tensor(vec.uop.after(store)) out.realize() # TODO: testing allclose assert Tensor.allclose(ref, out, atol=1e-6), f"{ref.numpy()=}, {out.numpy()=}" class TestOuterScan(unittest.TestCase): def _test_scan(self): vec = Tensor.randn(1, 10).realize() mats = Tensor.randn(3, 10, 10).realize() # 3 matmuls in "scan" vec1 = vec @ mats[0] vec2 = vec1 @ mats[1] vec3 = vec2 @ mats[2] ref = Tensor.stack(vec1, vec2, vec3) ref.realize() return vec, mats, ref def test_uop_scan_matmul(self): vec, mats, ref = self._test_scan() # 3 matmuls with SCAN i = UOp.range(3, -100, AxisType.OUTER) out = Tensor.empty(3, 1, 10) phi = Tensor(i.eq(0).where(vec.uop, out[(i-1).maximum(0)].uop)) comp = phi @ mats[i] store = out[i].uop.store(comp.uop).end(i) out = Tensor(out.uop.after(store)) out.realize() # TODO: testing allclose assert Tensor.allclose(ref, out, atol=1e-6), f"{ref.numpy()=}, {out.numpy()=}" class TestOuterworld(unittest.TestCase): def test_range_plus_1(self): t = Tensor.arange(100).reshape(10,10).realize() # passthrough ranges a = UOp.range(10, -1) sel = t[a] + 1 assert sel.shape == (10,) cpy = sel.reshape(1, 10).expand(a, 10).contiguous().realize() self.assertTrue((t+1==cpy).all().item()) def test_range_plus_1_transpose(self): t = Tensor.arange(100).reshape(10,10).realize() # passthrough ranges a = UOp.range(10, -1) sel = t[a] + 1 assert sel.shape == (10,) cpy = sel.reshape(10, 1).expand(10, a).contiguous().realize() self.assertTrue(((t+1).T==cpy).all().item()) def test_flip_range(self): t = Tensor.rand(10, 10).realize() # passthrough ranges a = UOp.range(10, -1) sel = t[9-a] cpy = sel.reshape(1, 10).expand(a, 10).contiguous().realize() self.assertTrue((t.flip(0)==cpy).all().item()) def test_vmap(self): def f(x): return x.sum(axis=0)*2 x = Tensor.ones(3, 10, 2).contiguous() # vmap across axis 0 a = UOp.range(3, -1) out = f(x[a]) out = out.reshape(1, 2).expand(a, 2).contiguous() # 3x2 grid of 20 out.realize() self.assertTrue((out==20).all().item()) def test_fancy_vmap(self): def f(x,y): return x+y x = Tensor.arange(9).reshape(3,3).contiguous() y = Tensor.arange(9).reshape(3,3).contiguous() a = UOp.range(3, -1) out = f(x[:,a], y[a,:]) # TODO: this should support flatten out = out.reshape(1, 3).expand(a, 3).contiguous().realize() self.assertListEqual([[0,4,8],[4,8,12],[8,12,16]], out.tolist()) class TestVmap(unittest.TestCase): def test_vmap_inner(self, axis_type=AxisType.LOOP, fuse=False, grad=False): x = Tensor.ones(1, 10).contiguous().requires_grad_() mats = Tensor.ones(3, 10, 10).contiguous().requires_grad_() ref = x @ mats if fuse: ref = ref * 2 # vmap across axis 0 a = UOp.range(3, -1, axis_type) out = x @ mats[a] out = out.reshape(1, 10).pad(((a,(3-a)-1), None)) out = Tensor(out.uop.reduce(a, arg=Ops.ADD)) if fuse: out = out * 2 if grad: out.mean().backward() np.testing.assert_allclose(mats.grad.numpy(), (2./30) if fuse else (1./30)) out.realize() # TODO: testing allclose assert Tensor.allclose(ref, out, atol=1e-6), f"{ref.numpy()=}, {out.numpy()=}" def test_vmap_inner_fuse(self): self.test_vmap_inner(fuse=True) def test_vmap_outer(self): self.test_vmap_inner(AxisType.OUTER) def test_vmap_outer_fuse(self): self.test_vmap_inner(AxisType.OUTER, fuse=True) def test_vmap_inner_grad(self): self.test_vmap_inner(grad=True) def test_vmap_inner_fuse_grad(self): self.test_vmap_inner(fuse=True, grad=True) def test_vmap_outer_grad(self): self.test_vmap_inner(AxisType.OUTER, grad=True) def test_vmap_convs(self): layers = [ nn.Conv2d(1, 8, 3), Tensor.relu, nn.Conv2d(8, 8, 3), Tensor.relu] img = Tensor.randn(4, 1, 16, 16).realize(*nn.state.get_parameters(layers)) a = UOp.range(4, -1, AxisType.OUTER) out = img[a:a+1].sequential(layers) out = out.pad(((a,(4-a)-1), None, None, None)) out = Tensor(out.uop.reduce(a, arg=Ops.ADD)) out.realize() np.testing.assert_allclose(out.numpy(), img.sequential(layers).numpy(), atol=1e-6) def test_vmap_gemm(self): layers = [ nn.Linear(16, 16, bias=False), Tensor.relu, nn.Linear(16, 16, bias=False), Tensor.relu] img = Tensor.randn(4, 16).realize(*nn.state.get_parameters(layers)) a = UOp.range(4, -1, AxisType.OUTER) out = img[a:a+1].sequential(layers) out = out.pad(((a,(4-a)-1), None)) out = Tensor(out.uop.reduce(a, arg=Ops.ADD)) out.realize() np.testing.assert_allclose(out.numpy(), img.sequential(layers).numpy(), atol=1e-6) @unittest.skip("this is broken, we need to lower the outer reduce in the outer graph") def test_vmap_gemm_grad(self): layers = [ nn.Linear(16, 16, bias=False), Tensor.relu, nn.Linear(16, 16, bias=False), Tensor.relu] layer_tensors = nn.state.get_parameters(layers) img = Tensor.randn(4, 16).realize(*layer_tensors) for l in layer_tensors: l.requires_grad_() a = UOp.range(4, -1, AxisType.OUTER) out = img[a:a+1].sequential(layers) out = out.pad(((a,(4-a)-1), None)) out = Tensor(out.uop.reduce(a, arg=Ops.ADD)) out.mean().backward() grads = [l.grad for l in layer_tensors] out.realize(*grads) out_grads = [x.numpy() for x in grads] # compute reference grads for l in layer_tensors: l.grad = None img.sequential(layers).mean().backward() grads = [l.grad for l in layer_tensors] out.realize(*grads) ref_grads = [x.numpy() for x in grads] # compare for o,r in zip(out_grads, ref_grads): np.testing.assert_allclose(o, r, atol=1e-6) if __name__ == '__main__': unittest.main()