from __future__ import annotations from typing import Dict, Union, Tuple, Any, List, cast import functools, hashlib from enum import Enum, auto from dataclasses import dataclass from tinygrad.helpers import dedup, pretty_print, prod from tinygrad.ops import ReduceOps, UnaryOps, BinaryOps, TernaryOps, UOp, UOps from tinygrad.dtype import ImageDType, PtrDType, dtypes, DType, ConstType from tinygrad.shape.symbolic import Variable, sint from tinygrad.shape.shapetracker import ShapeTracker # these ops are deleted after AST is UOp class BufferOps(Enum): LOAD = auto(); CONST = auto(); STORE = auto() # noqa: E702 class MetaOps(Enum): KERNEL = auto(); Op = Union[UnaryOps, BinaryOps, ReduceOps, MetaOps, TernaryOps, BufferOps] @dataclass(frozen=True) class MemBuffer: idx: int dtype: DType st: ShapeTracker @dataclass(frozen=True) class ConstBuffer: val: ConstType | Variable dtype: DType st: ShapeTracker @dataclass(frozen=True, eq=False) class LazyOp: op: Op src: Tuple[LazyOp, ...] = () arg: Any = None def cached_compare(self, x, context): if id(self) == id(x): return True if self.op != x.op or self.arg != x.arg or len(self.src) != len(x.src): return False if (key := (id(self), id(x))) in context: return context[key] ret = context[key] = all(a.cached_compare(b, context) for a,b in zip(self.src, x.src)) return ret def __eq__(self, x): return self.cached_compare(x, context={}) def __repr__(self:LazyOp): return pretty_print(self, lambda x: f'LazyOp({x.op}, arg={x.arg}, src=(%s))') @functools.cached_property def dtype(self) -> DType: if self.op in BufferOps: return self.arg.dtype if self.op in [UnaryOps.CAST, UnaryOps.BITCAST]: return self.arg return dtypes.bool if self.op in {BinaryOps.CMPLT, BinaryOps.CMPNE} else self.src[-1].dtype @functools.cached_property def full_shape(self) -> Tuple[sint, ...]: if len(self.src) == 0 and self.op in BufferOps: return self.arg.st.shape return tuple(max(x) for x in zip(*[x.full_shape for x in self.src])) @functools.cached_property def key(self) -> bytes: return hashlib.sha256(functools.reduce(lambda x,y: x+y, [s.key for s in self.src], str((self.op, self.arg)).encode())).digest() @functools.cached_property def hash(self): return hash((self.op, self.src, self.arg)) def __hash__(self): return self.hash @functools.cached_property def lazyops(self) -> List[LazyOp]: return dedup([self] + [item for x in self.src for item in x.lazyops]) def vars(self) -> List[Variable]: extract_vars = [x.arg.st.vars() for x in self.lazyops if x.op in BufferOps] const_vars = [x.arg.val for x in self.lazyops if x.op is BufferOps.CONST and isinstance(x.arg.val, Variable)] return sorted(set.union(*extract_vars, set(const_vars)), key=lambda v: v.expr) def __add__(self, x:LazyOp): return LazyOp(BinaryOps.ADD, (self, x)) def __sub__(self, x:LazyOp): return LazyOp(BinaryOps.ADD, (self, -x)) def __mul__(self, x:LazyOp): return LazyOp(BinaryOps.MUL, (self, x)) def ne(self, x:LazyOp): return LazyOp(BinaryOps.CMPNE, (self, x)) def eq(self, x:LazyOp): return -self.ne(x) def __neg__(self): return LazyOp(UnaryOps.NEG, (self,)) @staticmethod def const(val, dtype:DType, shape:Tuple[sint, ...]): return LazyOp(BufferOps.CONST, (), ConstBuffer(val, dtype, ShapeTracker.from_shape(()).reshape((1,)*len(shape)).expand(shape))) # the living definition of LazyOps def verify_lazyop(ast:LazyOp) -> Dict[LazyOp, ShapeTracker]: assert ast.op is MetaOps.KERNEL, "must be SINK" sts: Dict[LazyOp, ShapeTracker] = {} def assert_valid(op:LazyOp, st:ShapeTracker): if op in sts: return # restore globals from the two stage reduce if op.op is BufferOps.LOAD and op.arg.idx < 0: assert_valid(local_reduce:=op.src[0].src[0], op.arg.st) return sts.setdefault(op, sts[local_reduce]) for x in op.src: assert_valid(x, st) # only reduceop is allowed to change shape, limited to turning n to 1 if op.op in ReduceOps: axis = op.arg assert isinstance(axis, tuple) and all(isinstance(i, int) for i in axis), f"reduceop must have axis {op.arg}" st = ShapeTracker.from_shape(sts[op.src[0]].reduce(axis)) else: # movementops are pushed to the edges with LOAD # elementwise inherits shape st = op.arg.st if op.op in BufferOps else sts[op.src[0]] for x in op.src: if sts[x].shape != st.shape: if prod(sts[x].shape) == prod(st.shape): raise AssertionError(f"found implicit reshape {x.op} {op.op} {sts[x].shape} != {st.shape}") raise AssertionError(f"found implicit expand {x.op} {sts[x].shape} != {op.op} {st.shape} {prod(sts[x].shape)} != {prod(st.shape)}") sts[op] = st for i, out in enumerate(ast.src): assert out.arg.idx == i, f"unexpected output buffer idx {out.arg.idx} != {i}" assert out.op is BufferOps.STORE, f"kernels must have stores as the output, got {out.op}" assert out.arg.st.size == ast.src[-1].arg.st.size, f"outputs must have the same size, got {out.arg.st.size}" assert_valid(out, out.arg.st) shape_dims = [sorted(dedup(dims)) for dims in zip(*[x.shape for x in sts.values()])] assert all(len(x) == 1 or (len(x) == 2 and x[0] == 1) for x in shape_dims), f"shapes must have either 1 or n in each dimension, {shape_dims}" return sts def to_uop(*a) -> UOp: assert isinstance(a[0], LazyOp), f"{a} must be a LazyOp ast" if a[0].op is BufferOps.STORE: ast = LazyOp(MetaOps.KERNEL, a) else: assert a[0].op is MetaOps.KERNEL ast = a[0] verify_lazyop(ast) @functools.lru_cache(None) def create_uop(lop:LazyOp) -> UOp: if lop.op in BufferOps: st_uop = lop.arg.st.to_uop() membuf_dtype: DType = lop.arg.dtype dtype = membuf_dtype.base if isinstance(membuf_dtype, ImageDType) else membuf_dtype if lop.op is BufferOps.CONST: return UOp(UOps.CONST, dtype, (st_uop,), lop.arg.val) buf = UOp(UOps.DEFINE_GLOBAL, membuf_dtype if isinstance(membuf_dtype, ImageDType) else PtrDType(membuf_dtype), (), lop.arg.idx) if lop.op is BufferOps.LOAD: return UOp(UOps.LOAD, dtype, (buf, st_uop)) return UOp(UOps.STORE, dtypes.void, (buf, st_uop, create_uop(lop.src[0]))) src = tuple(create_uop(x) for x in lop.src) if lop.op is MetaOps.KERNEL: return UOp(UOps.SINK, dtypes.void, src) if lop.op in ReduceOps: alu_op = {ReduceOps.SUM:BinaryOps.ADD, ReduceOps.PROD:BinaryOps.MUL, ReduceOps.MAX:BinaryOps.MAX}[cast(ReduceOps, lop.op)] return UOp(UOps.REDUCE_AXIS, src[0].dtype, src, (alu_op, lop.arg)) if lop.op is UnaryOps.CAST: return UOp(UOps.CAST, lop.arg.scalar(), src) if lop.op is UnaryOps.BITCAST: return UOp(UOps.BITCAST, lop.arg.scalar(), src) return src[0].alu(lop.op, *src[1:]) ret = create_uop(ast) #with open("/tmp/ast", "w") as f: f.write(str(ret)) return ret