import ast import pathlib import sys import unittest import numpy as np from PIL import Image from models.efficientnet import EfficientNet from tinygrad.tensor import Tensor def _load_labels(): labels_filename = pathlib.Path(__file__).parent / 'efficientnet/imagenet1000_clsidx_to_labels.txt' return ast.literal_eval(labels_filename.read_text()) _LABELS = _load_labels() def _infer(model: EfficientNet, img): # preprocess image aspect_ratio = img.size[0] / img.size[1] img = img.resize((int(224*max(aspect_ratio,1.0)), int(224*max(1.0/aspect_ratio,1.0)))) img = np.array(img) y0, x0 =(np.asarray(img.shape)[:2] - 224) // 2 img = img[y0: y0 + 224, x0: x0 + 224] # low level preprocess img = np.moveaxis(img, [2, 0, 1], [0, 1, 2]) img = img.astype(np.float32)[:3].reshape(1, 3, 224, 224) img /= 255.0 img -= np.array([0.485, 0.456, 0.406]).reshape((1, -1, 1, 1)) img /= np.array([0.229, 0.224, 0.225]).reshape((1, -1, 1, 1)) # run the net out = model.forward(Tensor(img)).cpu() class_id = np.argmax(out.data) return _LABELS[np.argmax(out.data)] class TestEfficientNet(unittest.TestCase): def test_chicken(self): chicken_img = Image.open(pathlib.Path(__file__).parent / 'efficientnet/Chicken.jpg') model = EfficientNet(number=0) model.load_weights_from_torch() label = _infer(model, chicken_img) self.assertEqual(label, "hen", f"Expected hen but got {label} for number=0") if __name__ == '__main__': unittest.main()