# stuff needed to unpack a kernel from typing import Tuple from tinygrad.ops import LazyOp, TernaryOps, BinaryOps, UnaryOps, ReduceOps, BufferOps, MemBuffer, ConstBuffer, MetaOps from tinygrad.codegen.kernel import Opt, OptOps from tinygrad.dtype import dtypes from tinygrad.shape.shapetracker import ShapeTracker from tinygrad.shape.view import View from tinygrad.shape.symbolic import Variable, NumNode inf, nan = float('inf'), float('nan') # kernel unpacker from tinygrad.codegen.kernel import Kernel def ast_str_to_ast(ast_str:str) -> LazyOp: return LazyOp(MetaOps.SINK, val) if isinstance(val:=eval(ast_str), tuple) else val def ast_str_to_lin(ast_str:str, opts=None): return Kernel(ast_str_to_ast(ast_str), opts=opts) def kern_str_to_lin(kern_str:str, opts=None): (ast, applied_opts,) = eval(kern_str) k = Kernel(ast, opts=opts) for opt in applied_opts: k.apply_opt(opt) return k # load worlds, a dataset of about 12k kernels import gzip from pathlib import Path import random from tinygrad.helpers import dedup def load_worlds(filter_reduce=True, filter_noimage=True, filter_novariable=True): fn = Path(__file__).parent.parent / "datasets/sops.gz" ast_strs = dedup(gzip.open(fn).read().decode('utf-8').strip().split("\n")) if filter_reduce: ast_strs = [x for x in ast_strs if "ReduceOps" in x] if filter_noimage: ast_strs = [x for x in ast_strs if "dtypes.image" not in x] if filter_novariable: ast_strs = [x for x in ast_strs if "Variable" not in x] random.seed(1337) random.shuffle(ast_strs) return ast_strs def assert_same_lin(l1, l2): assert l1.colored_shape() == l2.colored_shape() assert all(x==y for x,y in zip(l1.sts, l2.sts)) # get features import math from tinygrad.shape.symbolic import Node MAX_DIMS = 16 MAX_BUFS = 9 def lin_to_feats(lin:Kernel, use_sts=True): assert lin.shape_len < MAX_DIMS, "too many dims" all_colors = ["blue", "cyan", "white", "green", "red", "magenta", "yellow"] lc = [all_colors.index(x) for x in lin.colors()] ret = [] # before, some generic linearizer stuff ret.append(lin.upcasted) ret.append(lin.local_dims) # first, the full shape, including the colors for s,os,c in zip(lin.full_shape,lin.output_shape,lc): if isinstance(s, Node): ret.append(False) ret += [0]*9 else: ret.append(True) ret.append(math.log2(s)) ret.append(min(33, s)) ret.append(math.log2(os)) ret.append(min(33, os)) ret.append(s%2 == 0) ret.append(s%3 == 0) ret.append(s%4 == 0) ret.append(s%8 == 0) ret.append(s%16 == 0) cc = [0]*7 cc[c] = 1 ret += cc ret += [0] * (17*(MAX_DIMS-len(lin.full_shape))) ret = [float(x) for x in ret] if use_sts: my_sts = dedup([(x.shape == lin.full_shape, x.real_strides(), any(v.mask is not None for v in x.views), len(x.views)) for x in lin.sts]) assert len(my_sts) < MAX_BUFS sts_len = 3 + 5*MAX_DIMS for s in my_sts: ret.append(s[0]) # reduce ret.append(s[2]) # has mask ret.append(s[3]) # len views for d in s[1]: ret.append(d is None) ret.append(d == 0) ret.append(d == 1) ret.append(min(33, d) if d is not None else -1) if d is not None and d >= 1: ret.append(math.log2(d)) else: ret.append(-1) ret += [0] * (5*(MAX_DIMS - len(s[1]))) ret += [0] * (sts_len*(MAX_BUFS - len(my_sts))) assert len(ret) == 1021, f"wrong len {len(ret)}" else: assert len(ret) == 274, f"wrong len {len(ret)}" return ret