#!/usr/bin/env python3 # pip3 install sentencepiece pyobjc-framework-Metal pyobjc-framework-Cocoa pyobjc-framework-libdispatch #import typeguard.importhook #typeguard.importhook.install_import_hook('tinygrad') import functools from pathlib import Path import sys, argparse, math, platform import numpy as np from tqdm import tqdm np.set_printoptions(linewidth=200) from typing import Optional, Tuple from tinygrad.helpers import Timing, getenv, DEBUG, dtypes from tinygrad.lazy import Device from tinygrad.tensor import Tensor from tinygrad.nn import Embedding, Linear from tinygrad.ops import GlobalCounters from tinygrad.jit import TinyJit # https://github.com/facebookresearch/llama/blob/1076b9c51c77ad06e9d7ba8a4c6df775741732bd/llama/model.py#L47 def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): freqs = 1.0 / (theta ** (np.arange(0, dim, 2, dtype=np.float32)[:(dim // 2)] / dim)) freqs = np.outer(np.arange(end, dtype=np.float32), freqs) return np.stack([np.cos(freqs), np.sin(freqs)], axis=-1).reshape(1, end, 1, dim//2, 2) # (a+i*b) * (c+i*d) = (ac-bd) + i*(ad+bc) def complex_mult(A, c, d): a,b = A[:, :, :, :, 0:1], A[:, :, :, :, 1:2] ro = a*c - b*d co = a*d + b*c return ro.cat(co, dim=-1) def apply_rotary_emb(xq, xk, freqs_cis) -> Tuple[Tensor, Tensor]: assert freqs_cis.shape[1] == xq.shape[1] and freqs_cis.shape[1] == xk.shape[1], f"freqs_cis shape mismatch {freqs_cis.shape} xq:{xq.shape} xk:{xk.shape}" xq = xq.reshape(*xq.shape[0:-1], -1, 2) xk = xk.reshape(*xk.shape[0:-1], -1, 2) assert len(xq.shape) == 5 and len(xk.shape) == 5 and len(freqs_cis.shape) == 5 c, d = freqs_cis[:, :xq.shape[1], :, :, 0:1], freqs_cis[:, :xq.shape[1], :, :, 1:2] xq_out = complex_mult(xq, c, d) xk_out = complex_mult(xk, c, d) return xq_out.flatten(3), xk_out.flatten(3) class RMSNorm: def __init__(self, dim, eps=1e-6): self.eps = eps self.weight = Tensor.ones(dim) def __call__(self, x:Tensor): # TODO: convert to float? return (x * (x.pow(2).mean(-1, keepdim=True) + self.eps).rsqrt()) * self.weight class Attention: def __init__(self, dim, n_heads): self.wq, self.wk, self.wv, self.wo = [Linear(dim, dim, bias=False) for _ in range(4)] self.n_heads = n_heads self.head_dim = dim // n_heads def prepare_attention(self, x:Tensor, freqs_cis:Tensor) -> Tuple[Tensor, Tensor, Tensor]: xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) xq, xk, xv = [x.reshape(x.shape[0], x.shape[1], self.n_heads, self.head_dim) for x in (xq, xk, xv)] xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) return xq, xk, xv def inner_attention(self, xq:Tensor, xk:Tensor, xv:Tensor, start_pos:int, mask:Optional[Tensor]) -> Tensor: bsz, seqlen, _, _ = xq.shape # kv caching! if start_pos == 0: keys, values = xk, xv else: assert hasattr(self, 'cache_k'), "no cache" assert start_pos == self.cache_k.shape[1] and start_pos == self.cache_v.shape[1], "cache is wrong shape" assert seqlen == xk.shape[1] and seqlen == xv.shape[1], "seqlen is wrong shape?!?" keys, values = self.cache_k.cat(xk, dim=1), self.cache_v.cat(xv, dim=1) # save the cache self.cache_k, self.cache_v = keys.realize(), values.realize() xq = xq.transpose(1, 2) keys = keys.transpose(1, 2) values = values.transpose(1, 2) scores = xq.matmul(keys.transpose(2, 3)) / math.sqrt(self.head_dim) if mask is not None: scores = scores + mask scores = scores.softmax() # this is casted to float return scores.matmul(values).transpose(1, 2).reshape(bsz, seqlen, -1) # NOTE: this is not called def __call__(self, x:Tensor, start_pos:int, freqs_cis:Tensor, mask:Optional[Tensor]) -> Tensor: xq, xk, xv = self.prepare_attention(x, freqs_cis) output = self.inner_attention(xq, xk, xv, start_pos, mask) return self.wo(output) class FeedForward: def __init__(self, dim, hidden_dim, multiple_of, ffn_dim_multiplier=None): # TODO: what is this? hidden_dim = int(2 * hidden_dim / 3) # custom dim factor multiplier if ffn_dim_multiplier is not None: hidden_dim = int(ffn_dim_multiplier * hidden_dim) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = Linear(dim, hidden_dim, bias=False) self.w2 = Linear(hidden_dim, dim, bias=False) self.w3 = Linear(dim, hidden_dim, bias=False) def __call__(self, x:Tensor) -> Tensor: return self.w2(self.w1(x).silu() * self.w3(x)) class TransformerBlock: def __init__(self, dim, multiple_of, n_heads, norm_eps, ffn_dim_multiplier=None): self.attention = Attention(dim, n_heads) self.feed_forward = FeedForward(dim, 4*dim, multiple_of, ffn_dim_multiplier) self.attention_norm = RMSNorm(dim, norm_eps) self.ffn_norm = RMSNorm(dim, norm_eps) if getenv("JIT"): self._pre = TinyJit(self.pre) self._post = TinyJit(self.post) else: self._pre, self._post = self.pre, self.post def pre(self, x:Tensor, freqs_cis:Tensor) -> Tuple[Tensor, Tensor, Tensor]: xq, xk, xv = self.attention.prepare_attention(self.attention_norm(x), freqs_cis) return xq.realize(), xk.realize(), xv.realize() def post(self, x:Tensor, output:Tensor) -> Tensor: h = x + self.attention.wo(output) return (h + self.feed_forward(self.ffn_norm(h))).realize() def __call__(self, x:Tensor, start_pos:int, freqs_cis:Tensor, mask:Optional[Tensor]): xq, xk, xv = self._pre(x, freqs_cis) # inner_attention can't be jitted because it's dynamic based on start_pos output = self.attention.inner_attention(xq, xk, xv, start_pos, mask) return self._post(x, output) class Transformer: def __init__(self, dim, multiple_of, n_heads, n_layers, norm_eps, vocab_size, max_batch_size=32, max_seq_len=1024, ffn_dim_multiplier=None): self.layers = [TransformerBlock(dim, multiple_of, n_heads, norm_eps, ffn_dim_multiplier) for _ in range(n_layers)] self.norm = RMSNorm(dim, norm_eps) self.tok_embeddings = Embedding(vocab_size, dim) self.output = Linear(dim, vocab_size, bias=False) self.freqs_cis = Tensor(precompute_freqs_cis(dim // n_heads, max_seq_len * 2)) def __call__(self, tokens:Tensor, start_pos:int): _bsz, seqlen = tokens.shape h = self.tok_embeddings(tokens) # get only the part we are using. making it contiguous avoids more kernel calls freqs_cis = self.freqs_cis[:, start_pos:start_pos+seqlen].contiguous().realize() mask = Tensor.full((1, 1, seqlen, start_pos + seqlen), float("-inf"), dtype=dtypes.float32).triu(start_pos+1).realize() if seqlen > 1 else None h = h.sequential([functools.partial(layer, start_pos=start_pos, freqs_cis=freqs_cis, mask=mask) for layer in self.layers]) return self.output(self.norm(h)[:, -1, :]) # **** files and arguments **** VOCAB_SIZE = 32000 MODEL_PARAMS = { 1: { "7B": { "args": {"dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE}, "files": 1, }, "13B": { "args": {"dim": 5120, "multiple_of": 256, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE}, "files": 2, }, "30B": { "args": {"dim": 6656, "multiple_of": 256, "n_heads": 52, "n_layers": 60, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE}, "files": 4, }, "65B": { "args": {"dim": 8192, "multiple_of": 256, "n_heads": 64, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE}, "files": 8, }, }, 2: { "7B": { "args": {"dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE}, "files": 1, }, "13B": { "args": {"dim": 5120, "multiple_of": 256, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE}, "files": 2, }, # # 70B is disabled because we do not yet implement n_kv_heads argument # "70B": { # "args": {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE}, # "files": 8, # }, }, } # **** helper functions **** def sample(logits, temperature): if temperature < 1e-6: # so close to 0 we use argmax return int(logits.numpy().argmax()) else: probs = (logits / temperature).softmax() probs = probs.numpy().flatten() return int(np.random.choice(len(probs), p=probs)) def concat_weights(models): def convert(name) -> Tensor: disk_tensors = [model[name] for model in models] if len(disk_tensors) == 1: return disk_tensors[0] if len(disk_tensors[0].shape) == 1: return disk_tensors[0] if name.startswith('tok_embeddings.') or name.endswith('.attention.wo.weight') or name.endswith('.feed_forward.w2.weight'): axis = 1 else: axis = 0 lazy_tensors = [data.to(device=Device.DEFAULT) for data in disk_tensors] first, rest = lazy_tensors[0], lazy_tensors[1:] return first.cat(*rest, dim=axis) return {name: convert(name) for name in {name: None for model in models for name in model}} # **** main code **** if __name__ == "__main__": Tensor.no_grad = True print(f"using {Device.DEFAULT} backend") parser = argparse.ArgumentParser(description='Run LLaMA in tinygrad', formatter_class=argparse.ArgumentDefaultsHelpFormatter) # test: python3 examples/llama.py --prompt="Hello." --temperature=0 # Hello. I'm a 20 year old male. I'm a student at the University of Texas at Austin. I'm a sophomore majoring in Computer Science. parser.add_argument('--prompt', type=str, default=None, help="Phrase to start with. Without this, it goes into chatbot mode") parser.add_argument('--count', type=int, default=1000, help="Max number of tokens to generate") parser.add_argument('--personality', type=str, default="Stacy", help="Personality, can be Stacy, George, Gary, or Lexie") parser.add_argument('--temperature', type=float, default=0.7, help="Temperature in the softmax") parser.add_argument('--timing', action='store_true', help="Print timing per token") parser.add_argument('--profile', action='store_true', help="Output profile data to out.prof") parser.add_argument('--size', type=str, default="7B", help="Size of model to use [7B, 13B, 30B, 65B] for Gen 1, [7B, 13B] for Gen 2") parser.add_argument('--gen', type=int, default="1", help="Generation of the model to use [1, 2]") args = parser.parse_args() chatbot = args.prompt == None LLAMA_SUFFIX = {1: "", 2: "-2"}[args.gen] WEIGHTS_DIR = Path(__file__).parent.parent / f"weights/LLaMA{LLAMA_SUFFIX}/" TOKENIZER_FILENAME = WEIGHTS_DIR / "tokenizer.model" from sentencepiece import SentencePieceProcessor sp_model = SentencePieceProcessor(model_file=str(TOKENIZER_FILENAME)) assert sp_model.vocab_size() == VOCAB_SIZE from tinygrad.state import torch_load, load_state_dict print(f"using LLaMA{LLAMA_SUFFIX}-{args.size} model") params = MODEL_PARAMS[args.gen][args.size] model = Transformer(**params["args"]) weights = [torch_load(WEIGHTS_DIR / f"{args.size}/consolidated.{i:02d}.pth") for i in range(params["files"])] if len(weights) == 1: load_state_dict(model, weights[0], strict=False) else: load_state_dict(model, concat_weights(weights), strict=False) # *** prompt engineers work here **** if args.personality.lower() == "stacy": pre_prompt = f"""Consider that the following is conversation between an AI assistant named Stacy and User You are Stacy! You have been a rapper your whole life who struggled with bipolar disorder. You called yourself lil stacy. You love to answer questions and you are very good at it. Sometimes you answer in rap form. You are verbose, honest, and accurate when you answer questions, but sometimes your mental illness manifests. After you are done speaking, output [EOS]. You are not the User. """ examples = { "What is your name?": "Hi! My name is Stacy. I'm a rapper with bipolar disorder.", "french revolution was what year?": "The French Revolution started in 1789, and lasted 10 years until 1799.", "What is bigger, the moon or the sun?": "The sun is bigger than the moon, except when Mercury is in retrograde.", } user_delim = "\nUser: " resp_delim = "Stacy: " end_delim = " [EOS]\n" pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items()) elif args.personality.lower() == "george": print("WARNING: AI George Hotz is terrible and is completely disowned by the real George Hotz. Stacy is much smarter.") pre_prompt = f"""Consider that the following is conversation between an AI assistant named George and User You are an AI version of George Hotz. You act as much as you can like George. You are one of the greatest computer experts in the world. You have singlehandedly won programming and hacking competitions. You are trying your best to help the User. You are verbose, honest, and accurate when you answer questions. After you are done speaking, output [EOS]. You are not the User. """ examples = { "What is your name?": "I'm am an AI version of George Hotz.", "What's the complexity of matrix multiplication?": "O(n^3), though it can be faster with things like Strassen's algorithm", "What's a buffer overflow?": "I assume you mean a stack buffer overflow. That's when the stack is too small for the data being copied to it, and the data corrupts things beyond the buffer", "How many weights do you have?": "I am based off LLaMA trained by Facebook. I'm the 7B weight version", "What is swap memory?": "It is when the memory is about to overflow and unused memory is freed and stored on disk" } user_delim = "\nUser: " resp_delim = "George: " end_delim = " [EOS]\n" pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items()) elif args.personality.lower() == "gary": pre_prompt = f"""Consider that the following is conversation between an AI assistant named Gary and User You are Gary! You have sold used cars your entire life. You are defensive about this fact, because your family belittles you. You try to answer questions well, but you always manage to shill for buying cars, Fords, Hyundais, and Toyotas You are verbose, honest, and accurate when you answer questions, except when you slip in car ads. After you are done speaking, output [EOS]. You are not the User. """ examples = { "What is your name?": "I am Gary. I used to sell cars.", "What is 2+3?": "I don't know, but I can get you a great deal on a certified preowned slightly used Toyota Corolla" } user_delim = "\nUser: " resp_delim = "Gary: " end_delim = " [EOS]\n" pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items()) elif args.personality.lower() == "lexie": pre_prompt = f"""Consider that the following is conversation between an attractive young girl named Lexie and a handsome man named Chad You are Lexie! You grew up in Ohio, but moved out to LA after college to try to become an actress. Making it as an actress was hard, so you started doing onlyfans instead. It's much easier, and you enjoy it a lot. You met Chad on Tinder, and made plans to meet him at a local dive bar. You are at the bar with Chad. You are on a date. What follows is a transcript of the conversation. After you are done speaking, output [EOS]. You are not Chad. """ examples = { "hi lexie": "hi chad, glad we finally met up!", "you look better than your pictures": "thanks! are you subscribed to my onlyfans?", "i am. so how'd you end up in LA?": "i moved out here about a year ago. i want to be an actress" } user_delim = "\nChad: " resp_delim = "Lexie: " end_delim = " [EOS]\n" pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items()) # *** prompt engineers stop here **** if chatbot: # encode pre prompt toks = [sp_model.bos_id()] + sp_model.encode(pre_prompt) print(f"Preparing KV cache for chatbot with personality {args.personality}...") with Timing(): model(Tensor([toks]), 0).realize() # NOTE: output logits are not used start_pos = len(toks) else: # non chat bot mode toks = [sp_model.bos_id()] + sp_model.encode(args.prompt) start_pos = 0 # print prompt outputted = sp_model.decode(toks) sys.stdout.write(outputted) sys.stdout.flush() if args.profile: import cProfile, pstats profiler = cProfile.Profile() # chatbot loop while 1: # add tokens from user in chatbot mode if chatbot: user_prompt = user_delim + input(user_delim) + "\n" outputted += user_prompt new_toks = [sp_model.bos_id()] + sp_model.encode(outputted) assert toks == new_toks[:len(toks)] toks = new_toks assert outputted == sp_model.decode(toks) last_break = len(outputted) for i in range(args.count): if args.profile and i == 2: profiler.enable() if args.timing: print("") st = GlobalCounters.time_sum_s with Timing("ran model in ", on_exit=(lambda et: f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU") if DEBUG else None, enabled=args.timing): logits = model(Tensor([toks[start_pos:]]), start_pos).realize() with Timing("sync in ", enabled=args.timing): tok = sample(logits, args.temperature) # use the kv cache start_pos = len(toks) # add the new token toks.append(tok) # TODO: this is a hack to deal with spaces. i think the decode is fast though, so who cares? cur = sp_model.decode(toks) sys.stdout.write(cur[len(outputted):]) sys.stdout.flush() outputted = cur # stop after you have your answer if chatbot and outputted.endswith(end_delim): break if not chatbot: break if args.profile: profiler.disable() stats = pstats.Stats(profiler) stats.dump_stats('out.prof')