from tinygrad.tensor import Tensor from tinygrad.nn import Conv2d, BatchNorm2D from tinygrad import optim from extra.utils import get_parameters # TODO: move to optim import unittest def model_step(lm): Tensor.training = True x = Tensor.ones(8,12,128,256, requires_grad=False) loss = lm.forward(x).sum() optimizer = optim.SGD(get_parameters(lm), lr=0.001) optimizer.zero_grad() loss.backward() optimizer.step() #out = loss.detach().numpy() for p in optimizer.params: p.realize() #x.grad.realize() Tensor.training = False class TestBatchnorm(unittest.TestCase): def test_conv(self): class LilModel: def __init__(self): self.c = Conv2d(12, 32, 3, padding=1, bias=False) def forward(self, x): return self.c(x).relu() lm = LilModel() model_step(lm) def test_two_conv(self): class LilModel: def __init__(self): self.c = Conv2d(12, 32, 3, padding=1, bias=False) self.c2 = Conv2d(32, 32, 3, padding=1, bias=False) def forward(self, x): return self.c2(self.c(x)).relu() lm = LilModel() model_step(lm) def test_conv_bn(self): class LilModel: def __init__(self): self.c = Conv2d(12, 32, 3, padding=1, bias=False) self.bn = BatchNorm2D(32, track_running_stats=False) def forward(self, x): return self.bn(self.c(x)).relu() lm = LilModel() model_step(lm) if __name__ == '__main__': unittest.main()