from typing import List from examples.mlperf.helpers import get_mlperf_bert_model from tinygrad import Tensor, Device, dtypes, nn from tinygrad.codegen.linearizer import Linearizer from tinygrad.device import Compiled from tinygrad.engine.graph import print_tree from tinygrad.engine.schedule import create_schedule from tinygrad.engine.search import time_linearizer, beam_search, bufs_from_lin from tinygrad.helpers import DEBUG, ansilen, getenv from tinygrad.ops import LoadOps, get_lazyop_info from tinygrad.shape.symbolic import sym_infer if __name__ == "__main__": if getenv("HALF", 1): dtypes.default_float = dtypes.half mdl = get_mlperf_bert_model() seen = set() # the device we are optimizing for device: Compiled = Device[Device.DEFAULT] if getenv("BACKWARD"): Tensor.training = True optim = (nn.optim.LAMB if getenv("LAMB") else nn.optim.SGD)(nn.state.get_parameters(mdl)) print(f"optimizing for {Device.DEFAULT}") # fake data BS = getenv("BS", 2) input_ids = Tensor.empty((BS, 512), dtype=dtypes.float32) segment_ids = Tensor.empty((BS, 512), dtype=dtypes.float32) attention_mask = Tensor.empty((BS, 512), dtype=dtypes.default_float) masked_positions = Tensor.empty((BS, 76), dtype=dtypes.float32) masked_lm_ids = Tensor.empty((BS, 76), dtype=dtypes.float32) masked_lm_weights = Tensor.empty((BS, 76), dtype=dtypes.float32) next_sentence_labels = Tensor.empty((BS, 1), dtype=dtypes.float32) # run model twice to get only what changes, these are the kernels of the model for i in range(2): lm_logits, seq_relationship_logits = mdl(input_ids, attention_mask, masked_positions, segment_ids) targets = [lm_logits.lazydata, seq_relationship_logits.lazydata] if getenv("BACKWARD"): optim.zero_grad() loss = mdl.loss(lm_logits, seq_relationship_logits, masked_lm_ids, masked_lm_weights, next_sentence_labels) # ignore grad norm and loss scaler for now loss.backward() targets += [x.lazydata for x in optim.schedule_step()] sched = create_schedule(targets, seen) print(f"schedule length {len(sched)}") sched = [x for x in sched if x.ast[0].op not in LoadOps] # focus on one kernel if getenv("KERNEL", -1) >= 0: sched = sched[getenv("KERNEL", -1):getenv("KERNEL", -1)+1] # work with the schedule total_tm = 0 running_gflops = 0 for i,si in enumerate(sched): ops = sum(get_lazyop_info(ast).flops for ast in si.ast) if DEBUG >= 2: for ast in si.ast: print_tree(ast) rawbufs = bufs_from_lin(Linearizer(*si.ast)) # "linearize" the op into uops in different ways lins:List[Linearizer] = [] # always try hand coded opt lin = Linearizer(*si.ast, opts=device.renderer) lin.hand_coded_optimizations() lins.append(lin) # maybe try tensor cores lin = Linearizer(*si.ast, opts=device.renderer) if lin.apply_tensor_cores(): lins.append(lin) # try a beam search if beam:=getenv("BEAM"): lin = Linearizer(*si.ast, opts=device.renderer) lin = beam_search(lin, rawbufs, beam, bool(getenv("BEAM_ESTIMATE", 1))) lins.append(lin) # benchmark the programs choices = [] for lin in lins: tm = time_linearizer(lin, rawbufs, allow_test_size=False, cnt=10) gflops = sym_infer(ops, {k:k.min for k in lin.ast[0].vars()})*1e-9/tm choices.append((tm, gflops, lin.linearize())) # print all kernels if DEBUG >= 1: print(f" kernel {i:2d} {lin.name+' '*(37-ansilen(lin.name))} {str(lin.global_size):18s} {str(lin.local_size):12s} takes {tm*1000:7.2f} ms, {gflops:6.0f} GFLOPS") tm, gflops, lin = sorted(choices, key=lambda x: x[0])[0] total_tm += tm running_gflops += gflops * tm print(f"*** {total_tm*1000:7.2f} ms : kernel {i:2d} {lin.name+' '*(37-ansilen(lin.name))} {str(lin.global_size):18s} {str(lin.local_size):12s} takes {tm*1000:7.2f} ms, {gflops:6.0f} GFLOPS") print(f"******* total {total_tm*1000:.2f} ms, {running_gflops/total_tm:6.0f} GFLOPS")