import numpy as np from tqdm import trange from tinygrad.tensor import Tensor, Device from tinygrad.helpers import getenv def sparse_categorical_crossentropy(out, Y): num_classes = out.shape[-1] YY = Y.flatten().astype(np.int32) y = np.zeros((YY.shape[0], num_classes), np.float32) # correct loss for NLL, torch NLL loss returns one per row y[range(y.shape[0]),YY] = -1.0*num_classes y = y.reshape(list(Y.shape)+[num_classes]) y = Tensor(y) return out.mul(y).mean() def train(model, X_train, Y_train, optim, steps, BS=128, lossfn=sparse_categorical_crossentropy, transform=lambda x: x, target_transform=lambda x: x, noloss=False): Tensor.training = True losses, accuracies = [], [] for i in (t := trange(steps, disable=getenv('CI', False))): samp = np.random.randint(0, X_train.shape[0], size=(BS)) x = Tensor(transform(X_train[samp]), requires_grad=False) y = target_transform(Y_train[samp]) # network out = model.forward(x) if hasattr(model, 'forward') else model(x) loss = lossfn(out, y) optim.zero_grad() loss.backward() if noloss: del loss optim.step() # printing if not noloss: cat = np.argmax(out.cpu().numpy(), axis=-1) accuracy = (cat == y).mean() loss = loss.detach().cpu().numpy() losses.append(loss) accuracies.append(accuracy) t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy)) def evaluate(model, X_test, Y_test, num_classes=None, BS=128, return_predict=False, transform=lambda x: x, target_transform=lambda y: y): Tensor.training = False def numpy_eval(Y_test, num_classes): Y_test_preds_out = np.zeros(list(Y_test.shape)+[num_classes]) for i in trange((len(Y_test)-1)//BS+1, disable=getenv('CI', False)): x = Tensor(transform(X_test[i*BS:(i+1)*BS])) out = model.forward(x) if hasattr(model, 'forward') else model(x) Y_test_preds_out[i*BS:(i+1)*BS] = out.cpu().numpy() Y_test_preds = np.argmax(Y_test_preds_out, axis=-1) Y_test = target_transform(Y_test) return (Y_test == Y_test_preds).mean(), Y_test_preds if num_classes is None: num_classes = Y_test.max().astype(int)+1 acc, Y_test_pred = numpy_eval(Y_test, num_classes) print("test set accuracy is %f" % acc) return (acc, Y_test_pred) if return_predict else acc