from typing import Tuple, Dict, List from tinygrad.helpers import DType from tinygrad.tensor import Device, Tensor from tinygrad.jit import TinyJit from tinygrad.nn.state import get_state_dict import json def compile_net(run:TinyJit, special_names:Dict[int,str]) -> Tuple[Dict[str,str],List[Tuple[str,List[str],List[int]]],Dict[str,Tuple[int,DType,int]],Dict[str,Tensor]]: functions, bufs, bufs_to_save, statements, bufnum = {}, {}, {}, [], 0 for fxn,args,var_vals in run.jit_cache: assert not var_vals, "symbolic shape is not supported" functions[fxn.name] = fxn.prg # NOTE: this assumes all with the same name are the same cargs = [] for i,arg in enumerate(args): key = id(arg) if key not in bufs: if key in special_names: bufs[key] = (special_names[key], arg._memsz, arg.dtype, key) else: bufs[key] = (f"buf_{bufnum}", arg._memsz, arg.dtype, key) bufnum += 1 if i > 0: bufs_to_save[bufs[key][0]] = arg # if first usage of a buffer is not an output, and it's not a special name cargs.append(bufs[key][0]) statements.append((fxn.name, cargs, fxn.global_size, fxn.local_size)) return functions, statements, {name:(size, dtype, key) for (name,size,dtype,key) in bufs.values()}, bufs_to_save def jit_model(model, the_input:Tensor) -> Tuple[TinyJit,Dict[int,str]]: assert hasattr(model, "forward") or callable(model), "model needs a forward function" @TinyJit def run(x): return (model.forward(x) if hasattr(model, "forward") else model(x)).realize() # twice to run the JIT for _ in range(2): the_output = run(the_input) # hack to put the inputs back assert len(run.input_replace) == 1, f"didn't get one input to replace {run.input_replace}" for (j,i),idx in run.input_replace.items(): run.jit_cache[j][1][i] = the_input.lazydata.realized # TODO: fetch this from the jit in self.input_replace and self.ret (hint: use get_parameters on self.ret) special_names = {id(the_input.lazydata.realized): "input", id(the_output.lazydata.realized): "outputs"} return run, special_names def export_model_clang(functions:Dict[str,str], statements:Dict[str,Tuple[str,int,int]], bufs:Dict[str,Tuple[str,int,int]], bufs_to_save:Dict[str,Tensor]) -> str: from tinygrad.runtime.ops_clang import CLANG_PROGRAM_HEADER cprog = [CLANG_PROGRAM_HEADER] for name,cl in bufs_to_save.items(): weight = ''.join(["\\x%02X"%x for x in bytes(cl._buf)]) cprog.append(f"unsigned char {name}_data[] = \"{weight}\";") cprog += [f"float {name}[{len}];" if name not in bufs_to_save else f"float *{name} = (float *){name}_data;" for name,(len,dtype,_key) in bufs.items() if name not in ['input', 'outputs']] cprog += list(functions.values()) cprog += ["void net(float* input, float* outputs) {"] + [f"{name}({', '.join(args)});" for (name, args, _global_size, _local_size) in statements] + ["}"] return '\n'.join(cprog) def export_model_webgpu(functions, statements, bufs, bufs_to_save, weight_names) -> Tuple[str,int,int]: kernel_code = '\n\n'.join([f"const {key} = `{code.replace(key, 'main')}`;" for key, code in functions.items()]) kernel_names = ', '.join([name for (name, _args, _global_size, _local_size) in statements]) kernel_calls = '\n '.join([f"addComputePass(device, commandEncoder, piplines[{i}], [{', '.join(args)}], {global_size});" for i, (_name, args, global_size, _local_size) in enumerate(statements) ]) _bufs = '\n '.join([f"const {name} = " + (f"createEmptyBuf(device, {size});" if _key not in weight_names else f"createWeightBuf(device, {size}, getTensorBuffer(safetensor, metadata['{weight_names[_key]}']))") + ";" for name,(size,dtype,_key) in bufs.items()]) return f""" const getTensorMetadata = (safetensorBuffer) => {{ const metadataLength = Number(new DataView(safetensorBuffer.buffer).getBigUint64(0, true)); const metadata = JSON.parse(new TextDecoder("utf8").decode(safetensorBuffer.subarray(8, 8 + metadataLength))); return Object.fromEntries(Object.entries(metadata).filter(([k, v]) => k !== "__metadata__").map(([k, v]) => [k, {{...v, data_offsets: v.data_offsets.map(x => 8 + metadataLength + x)}}])); }}; const getTensorBuffer = (safetensorBuffer, tensorMetadata) => {{ return safetensorBuffer.subarray(...tensorMetadata.data_offsets); }} const createEmptyBuf = (device, size) => {{ return device.createBuffer({{size, usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST }}); }}; const createWeightBuf = (device, size, data) => {{ const buf = device.createBuffer({{ mappedAtCreation: true, size, usage: GPUBufferUsage.STORAGE }}); new Uint8Array(buf.getMappedRange()).set(data); buf.unmap(); return buf; }}; const addComputePass = (device, commandEncoder, pipeline, bufs, workgroup) => {{ const bindGroup = device.createBindGroup({{layout: pipeline.getBindGroupLayout(0), entries: bufs.map((buffer, index) => ({{ binding: index, resource: {{ buffer }} }}))}}); const passEncoder = commandEncoder.beginComputePass(); passEncoder.setPipeline(pipeline); passEncoder.setBindGroup(0, bindGroup); passEncoder.dispatchWorkgroups(...workgroup); passEncoder.end(); }}; {kernel_code} const setupNet = async (device, safetensor) => {{ const metadata = getTensorMetadata(safetensor); {_bufs} const gpuWriteBuffer = device.createBuffer({{size:input.size, usage: GPUBufferUsage.COPY_SRC | GPUBufferUsage.MAP_WRITE }}); const gpuReadBuffer = device.createBuffer({{ size: outputs.size, usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ }}); const kernels = [{kernel_names}]; const piplines = await Promise.all(kernels.map(name => device.createComputePipelineAsync({{layout: "auto", compute: {{ module: device.createShaderModule({{ code: name }}), entryPoint: "main" }}}}))); return async (data) => {{ await gpuWriteBuffer.mapAsync(GPUMapMode.WRITE); new Float32Array(gpuWriteBuffer.getMappedRange()).set(data); gpuWriteBuffer.unmap(); const commandEncoder = device.createCommandEncoder(); commandEncoder.copyBufferToBuffer(gpuWriteBuffer, 0, input, 0, gpuWriteBuffer.size); {kernel_calls} commandEncoder.copyBufferToBuffer(outputs, 0, gpuReadBuffer, 0, outputs.size); const gpuCommands = commandEncoder.finish(); device.queue.submit([gpuCommands]); await gpuReadBuffer.mapAsync(GPUMapMode.READ); const resultBuffer = new Float32Array(gpuReadBuffer.size); resultBuffer.set(new Float32Array(gpuReadBuffer.getMappedRange())); gpuReadBuffer.unmap(); return resultBuffer; }} }} """ + f"\n\nconst loadNet = async (device) => {{ return await fetch('net.safetensors').then(x => x.arrayBuffer()).then(x => setupNet(device, new Uint8Array(x))); }}" def export_model(model, input:Tensor, target:str): assert Device.DEFAULT in ["WEBGPU", "CLANG", "CUDA", "GPU", "METAL"], "only WEBGPU, CLANG, CUDA, GPU, METAL are supported" run,special_names = jit_model(model, input) functions, statements, bufs, bufs_to_save = compile_net(run, special_names) state = get_state_dict(model) weight_names = {id(x.lazydata.realized): name for name, x in state.items()} prg = "" if target == "clang": prg = export_model_clang(functions, statements, bufs, bufs_to_save) elif target == "webgpu": prg = export_model_webgpu(functions, statements, bufs, bufs_to_save, weight_names) else: prg = json.dumps({ "backend": Device.DEFAULT, "input": { "size": bufs['input'][0], "dtype": bufs['input'][1].name }, "output": { "size": bufs["outputs"][0], "dtype": bufs["outputs"][1].name }, "functions": functions, "statements": [{ "kernel": kernel, "args": args, "global_size": global_size, "local_size": local_size } for (kernel, args, global_size, local_size) in statements], "buffers": { name: { "size": size, "dtype": dtype.name, "id": weight_names[_key] if _key in weight_names else "" } for name, (size,dtype,_key) in bufs.items() if name not in ["input", "outputs"] } }) return prg, bufs['input'][0], bufs['outputs'][0], state