import os, time, struct, functools, unittest from typing import Any, Callable import numpy as np from tinygrad import Tensor, dtypes, Device from tinygrad.uop.ops import UOp, Ops, KernelInfo from tinygrad.tensor import _to_np_dtype from tinygrad.engine.realize import Runner, get_program from tinygrad.dtype import DType from tinygrad.nn.state import get_parameters from tinygrad.helpers import T, CI from tinygrad.renderer import Renderer from tinygrad.codegen import full_rewrite_to_sink, line_rewrite, pm_linearize_cleanups from tinygrad.codegen.late.linearizer import linearize # decorator to skip slow tests by default, run with RUN_SLOW=1 to include them slow = unittest.skipUnless(os.getenv("RUN_SLOW"), "slow test, set RUN_SLOW=1 to run") from tinygrad.runtime.ops_python import PythonProgram, PythonRenderer, PythonCompiler def get_uops(sink:UOp, ren:Renderer|None=None) -> list[UOp]: """Extract linearized UOps from a sink. Test helper that only does linearization (no render).""" if ren is None: ren = Renderer() if sink.arg is None: sink = sink.replace(arg=KernelInfo()) full_sink = full_rewrite_to_sink(sink, ren, optimize=sink.tag is None) return line_rewrite(linearize(full_sink), pm_linearize_cleanups) def derandomize_model(model): for p in get_parameters(model): p.replace(Tensor.empty(p.shape, device=p.device, dtype=p.dtype)) p.realize() def assert_jit_cache_len(fxn, expected_len): if not fxn.jit_cache: assert expected_len == 0, expected_len return # until we have a better way of typing the prg in ExecItem if issubclass(type(fxn.jit_cache[0].prg), Runner) and not type(fxn.jit_cache[0].prg).__name__.endswith('Graph'): assert len(fxn.jit_cache) == expected_len, f"expected {expected_len}, got {len(fxn.jit_cache)}" else: assert len(fxn.jit_cache) == 1, len(fxn.jit_cache) # until we have a better way of typing the prg in ExecItem assert type(fxn.jit_cache[0].prg).__name__.endswith('Graph') assert len(fxn.jit_cache[0].prg.jit_cache) == expected_len def rand_for_dtype(dt:DType, size:int): if dtypes.is_unsigned(dt): return np.random.randint(0, 100, size=size, dtype=_to_np_dtype(dt)) elif dtypes.is_int(dt): return np.random.randint(-100, 100, size=size, dtype=_to_np_dtype(dt)) elif dt == dtypes.bool: return np.random.choice([True, False], size=size) return np.random.uniform(-10, 10, size=size).astype(_to_np_dtype(dt)) def timeit(fxn:Callable[..., T], *args, **kwargs) -> tuple[T, float]: st = time.perf_counter_ns() ret = fxn(*args, **kwargs) return ret, (time.perf_counter_ns()-st)*1e-6 def eval_uop(uop:UOp, inputs:list[tuple[DType, list[Any]]]|None=None): allocator = Device['PYTHON'].allocator bufs = [] for buf_dt, data in inputs or []: bufs.append(buf:=allocator.alloc(len(data) * buf_dt.itemsize)) allocator._copyin(buf, memoryview(struct.pack(str(len(data)) + (buf_dt.fmt or ""), *data))) g = UOp(Ops.DEFINE_GLOBAL, uop.dtype.ptr(), arg=0, src=()) prg = get_program(UOp.store(g.index(UOp.const(dtypes.int, 0)), uop).sink(), PythonRenderer()) prog = PythonProgram("run", PythonCompiler().compile(prg.src)) prog(out_buf:=allocator.alloc(uop.dtype.itemsize), *bufs) return out_buf.cast(uop.dtype.fmt or "").tolist()[0] def not_support_multi_device(): # CL and CUDA don't support multi device if in CI return CI and REAL_DEV in ("CL", "CUDA") def needs_second_gpu(fn): @functools.wraps(fn) def wrapper(self, *args, **kwargs): # check if there's a second GPU, if not, skip multi tests try: Tensor.zeros(10, device=f"{Device.DEFAULT}:1").contiguous().realize() except Exception as e: self.skipTest(f"second device not available: {e}") return fn(self, *args, **kwargs) return wrapper REAL_DEV = Device.DEFAULT