import functools import time import unittest from tinygrad import Tensor, TinyJit, GlobalCounters from tinygrad.helpers import getenv, Context from tinygrad.nn.optim import SGD from tinygrad.nn.state import get_parameters from extra.models import resnet from examples.mlperf.initializers import Conv2dHeNormal, Linear from examples.hlb_cifar10 import UnsyncedBatchNorm # benchmark memory or kernel count: DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py # benchmark speed: BEAM=2 JITCNT=10 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py # benchmark only one layer: BEAM=2 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py BenchmarkResnetTrain.test_layer1_2 # inspect: DEBUG=2 BEAM=2 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py # inspect convs: DEBUG=2 BEAM=2 CONV=1 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py # inspect convs with batchnorm: DEBUG=2 BEAM=2 CONV=1 BN=1 DEFAULT_FLOAT=HALF python test/external/external_benchmark_resnet.py # etc # use ASSIGN=0 to disable batchnorm/optimizer assigns # memory will be slightly high with JITCNT > 1 bs = getenv("BS", 64) class BenchmarkResnetTrain(unittest.TestCase): def _get_layer(self, layer_i, slice_i): # isolate to conv, with or without BN conv = getenv("CONV", 0) bn = getenv("BN", 0) if not hasattr(self, 'model'): resnet.Conv2d = Conv2dHeNormal resnet.Linear = Linear if not getenv("SYNCBN"): resnet.BatchNorm = functools.partial(UnsyncedBatchNorm, num_devices=1) self.model = resnet.ResNet50() self.layers = [self.model.layer1, self.model.layer2, self.model.layer3, self.model.layer4] layer = self.layers[layer_i][slice_i] xy = 112 >> layer_i if layer_i > 0: xy >>= (1 if slice_i > 0 else 0) name = f"layer{layer_i+1} slice{slice_i+1}" # get specific conv (0 or 1) if conv: if bn: f = [layer.conv2, layer.bn2, Tensor.relu] else: f = [layer.conv2, Tensor.relu] cin = layer.conv2.in_channels xy = xy // layer.conv1.stride return f"{name} conv2 x{str((bs, cin, xy, xy)):20s} k{str(layer.conv2.weight.shape):20s}" + (" bn" if bn else ""), f, cin, xy cin = layer.conv1.in_channels return f"{name} x{(bs, cin, xy, xy)}", [layer], cin, xy def _test_layer(self, name, layer, cin, xy): optim = SGD(get_parameters(layer), bs / 128 * 1.0) # need sgd for some params but not consequential for benchmarking with Context(SAVE_SCHEDULE=0): Tensor.realize(*[t.assign(t) for t in get_parameters(layer)]) JITCNT = getenv("JITCNT", 1) Tensor.training = True @TinyJit def step(x): for _ in range(JITCNT): optim.zero_grad() x.grad = None y = x.sequential(layer).contiguous().contiguous_backward() y.sum().backward() if getenv("ASSIGN", 1): Tensor.realize(y, x.grad, *optim.schedule_step()) else: Tensor.realize(y, x.grad, *[t.grad for t in optim.params]) return y.detach() CNT = getenv("CNT", 5) best_tm = None flops, mem_used, kernels = None, None, None for i in range(CNT): with Context(SAVE_SCHEDULE=0): x = Tensor.randn(bs, cin, xy, xy, requires_grad=True).realize() GlobalCounters.reset() st = time.perf_counter() out = step(x) with Context(SAVE_SCHEDULE=0): out._data() et = time.perf_counter() if flops is None: flops = GlobalCounters.global_ops / JITCNT mem_used = GlobalCounters.mem_used # a little high with JITCNT > 1 fsr kernels = GlobalCounters.kernel_count // JITCNT tm = (et-st) / JITCNT if best_tm is None or tm < best_tm: best_tm = tm print(f"\r{name:42s}: {best_tm * 1000:>9.2f} ms, {flops / 10**12 / tm:>7.2f} tflops, {mem_used / 10**9: 7.2f} GB used, {kernels:>6d} kernels") def test_layer1_1(self): self._test_layer(*self._get_layer(0, 0)) def test_layer1_2(self): self._test_layer(*self._get_layer(0, 1)) def test_layer2_1(self): self._test_layer(*self._get_layer(1, 0)) def test_layer2_2(self): self._test_layer(*self._get_layer(1, 1)) def test_layer3_1(self): self._test_layer(*self._get_layer(2, 0)) def test_layer3_2(self): self._test_layer(*self._get_layer(2, 1)) def test_layer4_1(self): self._test_layer(*self._get_layer(3, 0)) def test_layer4_2(self): self._test_layer(*self._get_layer(3, 1)) if __name__ == '__main__': unittest.main()