# model based off https://towardsdatascience.com/going-beyond-99-mnist-handwritten-digits-recognition-cfff96337392 from typing import List, Callable from tinygrad import Tensor, TinyJit, nn, GlobalCounters from extra.datasets import fetch_mnist from tqdm import trange class Model: def __init__(self): self.layers: List[Callable[[Tensor], Tensor]] = [ nn.Conv2d(1, 32, 5), Tensor.relu, nn.Conv2d(32, 32, 5), Tensor.relu, nn.BatchNorm2d(32), Tensor.max_pool2d, nn.Conv2d(32, 64, 3), Tensor.relu, nn.Conv2d(64, 64, 3), Tensor.relu, nn.BatchNorm2d(64), Tensor.max_pool2d, lambda x: x.flatten(1), nn.Linear(576, 10)] def __call__(self, x:Tensor) -> Tensor: return x.sequential(self.layers) if __name__ == "__main__": X_train, Y_train, X_test, Y_test = fetch_mnist(tensors=True) model = Model() opt = nn.optim.Adam(nn.state.get_parameters(model)) # TODO: there's a compiler error if you comment out TinyJit since randint isn't being realized and there's something weird with int @TinyJit def train_step(samples:Tensor) -> Tensor: with Tensor.train(): opt.zero_grad() # TODO: this "gather" of samples is very slow. will be under 5s when this is fixed loss = model(X_train[samples]).sparse_categorical_crossentropy(Y_train[samples]).backward() opt.step() return loss.realize() @TinyJit def get_test_acc() -> Tensor: return ((model(X_test).argmax(axis=1) == Y_test).mean()*100).realize() test_acc = float('nan') for i in (t:=trange(70)): GlobalCounters.reset() # NOTE: this makes it nice for DEBUG=2 timing samples = Tensor.randint(512, high=X_train.shape[0]) # TODO: put this in the JIT when rand is fixed loss = train_step(samples) if i%10 == 9: test_acc = get_test_acc().item() t.set_description(f"loss: {loss.item():6.2f} test_accuracy: {test_acc:5.2f}%")