# tinygrad is a tensor library, and as a tensor library it has multiple parts # 1. a "runtime". this allows buffer management, compilation, and running programs # 2. a "Device" that uses the runtime but specifies compute in an abstract way for all # 3. a "LazyBuffer" that fuses the compute into kernels, using memory only when needed # 4. a "Tensor" that provides an easy to use frontend with autograd ".backward()" print("******** first, the runtime ***********") from tinygrad.runtime.ops_clang import ClangProgram, ClangCompiler, MallocAllocator # allocate some buffers out = MallocAllocator.alloc(4) a = MallocAllocator.alloc(4) b = MallocAllocator.alloc(4) # load in some values (little endian) MallocAllocator.copyin(a, bytearray([2,0,0,0])) MallocAllocator.copyin(b, bytearray([3,0,0,0])) # compile a program to a binary lib = ClangCompiler().compile("void add(int *out, int *a, int *b) { out[0] = a[0] + b[0]; }") # create a runtime for the program (ctypes.CDLL) fxn = ClangProgram("add", lib) # run the program fxn(out, a, b) # check the data out print(val := MallocAllocator.as_buffer(out).cast("I").tolist()[0]) assert val == 5 print("******** second, the Device ***********") DEVICE = "CLANG" # NOTE: you can change this! import struct from tinygrad.dtype import dtypes from tinygrad.device import Buffer, Device from tinygrad.ops import LazyOp, BufferOps, MemBuffer, BinaryOps from tinygrad.shape.shapetracker import ShapeTracker # allocate some buffers + load in values out = Buffer(DEVICE, 1, dtypes.int32) a = Buffer(DEVICE, 1, dtypes.int32).copyin(memoryview(bytearray(struct.pack("I", 2)))) b = Buffer(DEVICE, 1, dtypes.int32).copyin(memoryview(bytearray(struct.pack("I", 3)))) # NOTE: a._buf is the same as the return from MallocAllocator.alloc # describe the computation ld_1 = LazyOp(BufferOps.LOAD, (), MemBuffer(1, dtypes.int32, ShapeTracker.from_shape((1,)))) ld_2 = LazyOp(BufferOps.LOAD, (), MemBuffer(2, dtypes.int32, ShapeTracker.from_shape((1,)))) alu = LazyOp(BinaryOps.ADD, (ld_1, ld_2)) st_0 = LazyOp(BufferOps.STORE, (alu,), MemBuffer(0, dtypes.int32, ShapeTracker.from_shape((1,)))) # convert the computation to a "linearized" format (print the format) lin = Device[DEVICE].get_linearizer(st_0).linearize() for u in lin.uops: print(u) # compile a program (and print the source) fxn = Device[DEVICE].to_program(lin) print(fxn.prg) # NOTE: fxn.clprg is the ClangProgram # run the program fxn.exec([out, a, b]) # check the data out assert out.as_buffer().cast('I')[0] == 5 print("******** third, the LazyBuffer ***********") from tinygrad.lazy import LazyBuffer, LoadOps from tinygrad.realize import run_schedule, create_schedule # allocate some values + load in values a = LazyBuffer.loadop(LoadOps.EMPTY, (1,), dtypes.int32, DEVICE) b = LazyBuffer.loadop(LoadOps.EMPTY, (1,), dtypes.int32, DEVICE) a.realized = Buffer(DEVICE, 1, dtypes.int32).copyin(memoryview(bytearray(struct.pack("I", 2)))) b.realized = Buffer(DEVICE, 1, dtypes.int32).copyin(memoryview(bytearray(struct.pack("I", 3)))) # describe the computation out = a.e(BinaryOps.ADD, b) # schedule the computation as a list of kernels sched = create_schedule([out]) for si in sched: print(si.ast.op) # NOTE: the first two convert it to CLANG # DEBUGGING: print the compute ast as a tree from tinygrad.features.graph import print_tree print_tree(sched[-1].ast) # NOTE: sched[-1].ast is the same as st_0 above # run that schedule run_schedule(sched) # check the data out assert out.realized.as_buffer().cast('I')[0] == 5 print("******** fourth, the Tensor ***********") from tinygrad import Tensor a = Tensor([2], dtype=dtypes.int32, device=DEVICE) b = Tensor([3], dtype=dtypes.int32, device=DEVICE) out = a + b # check the data out print(val:=out.item()) assert val == 5