# Run assembly on the AMD runtime and check correctness # VIZ=2 to profile import pathlib from tinygrad import Tensor, Device, dtypes, Context from tinygrad.engine.realize import ExecItem, CompiledRunner from tinygrad.renderer import ProgramSpec from tinygrad.uop.ops import track_rewrites, UOp from tinygrad.helpers import TracingKey, getenv fp = pathlib.Path(__file__).parent/"gemm.s" N = getenv("N", 8192) THREADS_PER_WG = 256 NUM_WG = N//THREADS_PER_WG * N//THREADS_PER_WG assert N % THREADS_PER_WG == 0, "N must be divisible by THREADS_PER_WG" # ** generate inputs on CPU scale = 10.0 import torch torch.manual_seed(0) A = (torch.randn(N, N, dtype=torch.float32, device="cpu") / scale).to(torch.bfloat16).contiguous() B = (torch.randn(N, N, dtype=torch.float32, device="cpu") / scale).to(torch.bfloat16).contiguous() Bt = B.t().contiguous() # transpose B for the baseline gemm C_torch = A@Bt # ** copy buffers to AMD # input creation and validation run on the copy engine for simpler tracing def from_torch(t:torch.Tensor) -> Tensor: return Tensor.from_blob(t.data_ptr(), t.shape, dtype=dtypes.bfloat16, device="cpu").to(Device.DEFAULT).realize() C_tiny = Tensor.matmul(from_torch(A), from_torch(Bt), dtype=dtypes.float32).cast(dtypes.bfloat16) C_asm = Tensor.empty_like(C_tiny) C_asm.uop.buffer.allocate() # ** run gemms # baseline tinygrad sched = C_tiny.schedule() assert len(sched) == 1 eis:list[ExecItem] = [sched[-1].lower()] ast = sched[-1].ast # assembly gemm @track_rewrites(name=lambda ret: TracingKey(ret.name, (ret.function_name,), ret)) def get_asm_prg() -> ProgramSpec: src = fp.read_text() lib = Device[Device.DEFAULT].compiler.compile(src) return ProgramSpec("gemm", src, Device.DEFAULT, ast, lib=lib, global_size=[NUM_WG, 1, 1], local_size=[THREADS_PER_WG, 1, 1], globals=[0, 1, 2], vars=[UOp.variable("SZ", 256, 8192), UOp.variable("NUM_WG", 1, 1024)]) eis.append(ExecItem(ast, [C_asm.uop.buffer, from_torch(B).uop.buffer, from_torch(A).uop.buffer], fixedvars={"SZ":N, "NUM_WG":NUM_WG}, prg=CompiledRunner(get_asm_prg()))) with Context(DEBUG=2): for ei in eis: et = ei.run(wait=True) print(f"{(N*N*N*2 / et)*1e-12:.2f} REAL TFLOPS") # ** correctness import ctypes def torch_bf16(t:Tensor) -> torch.tensor: asm_out = t.to("cpu").realize().uop.buffer._buf buf = (ctypes.c_uint16*C_asm.uop.size).from_address(asm_out.va_addr) return torch.frombuffer(buf, dtype=torch.bfloat16, count=C_asm.uop.size).reshape(C_asm.shape) assert torch.allclose(torch_bf16(C_asm), C_torch, rtol=1e-2, atol=1e-3) assert torch.allclose(torch_bf16(C_tiny), C_torch, rtol=1e-2, atol=1e-3)