import os, random, pickle, functools, itertools from typing import List, Tuple from pathlib import Path import numpy as np from PIL import Image from tqdm import tqdm from tinygrad import dtypes, Tensor from tinygrad.helpers import getenv, prod, Context, round_up from collections import deque from multiprocessing import Queue, Process, shared_memory, connection, Lock, cpu_count, Pool class MyQueue: def __init__(self, multiple_readers=True, multiple_writers=True): self._reader, self._writer = connection.Pipe(duplex=False) self._rlock = Lock() if multiple_readers else None self._wlock = Lock() if multiple_writers else None def get(self): if self._rlock: self._rlock.acquire() ret = pickle.loads(self._reader.recv_bytes()) if self._rlock: self._rlock.release() return ret def put(self, obj): if self._wlock: self._wlock.acquire() self._writer.send_bytes(pickle.dumps(obj)) if self._wlock: self._wlock.release() def shuffled_indices(n, seed=None): rng = random.Random(seed) indices = {} for i in range(n-1, -1, -1): j = rng.randint(0, i) if i not in indices: indices[i] = i if j not in indices: indices[j] = j indices[i], indices[j] = indices[j], indices[i] yield indices[i] del indices[i] def loader_process(q_in, q_out, X:Tensor, seed): import signal signal.signal(signal.SIGINT, lambda _, __: exit(0)) from extra.datasets.imagenet import center_crop, preprocess_train with Context(DEBUG=0): while (_recv := q_in.get()) is not None: idx, fn, val = _recv if fn is not None: img = Image.open(fn) img = img.convert('RGB') if img.mode != "RGB" else img if val: # eval: 76.08%, load in 0m7.366s (0m5.301s with simd) # sudo apt-get install libjpeg-dev # CC="cc -mavx2" pip install -U --force-reinstall pillow-simd img = center_crop(img) img = np.array(img) else: # reseed rng for determinism if seed is not None: np.random.seed(seed * 2 ** 10 + idx) random.seed(seed * 2 ** 10 + idx) img = preprocess_train(img) else: # pad data with training mean img = np.tile(np.array([[[123.68, 116.78, 103.94]]], dtype=np.uint8), (224, 224, 1)) # broken out #img_tensor = Tensor(img.tobytes(), device='CPU') #storage_tensor = X[idx].contiguous().realize().lazydata.realized #storage_tensor._copyin(img_tensor.numpy()) # faster X[idx].contiguous().realize().lazydata.realized.as_buffer(force_zero_copy=True)[:] = img.tobytes() # ideal #X[idx].assign(img.tobytes()) # NOTE: this is slow! q_out.put(idx) q_out.put(None) def batch_load_resnet(batch_size=64, val=False, shuffle=True, seed=None, pad_first_batch=False): from extra.datasets.imagenet import get_train_files, get_val_files files = get_val_files() if val else get_train_files() from extra.datasets.imagenet import get_imagenet_categories cir = get_imagenet_categories() if pad_first_batch: FIRST_BATCH_PAD = round_up(len(files), batch_size) - len(files) else: FIRST_BATCH_PAD = 0 file_count = FIRST_BATCH_PAD + len(files) BATCH_COUNT = min(32, file_count // batch_size) def _gen(): for _ in range(FIRST_BATCH_PAD): yield -1 yield from shuffled_indices(len(files), seed=seed) if shuffle else iter(range(len(files))) gen = iter(_gen()) def enqueue_batch(num): for idx in range(num*batch_size, (num+1)*batch_size): fidx = next(gen) if fidx != -1: fn = files[fidx] q_in.put((idx, fn, val)) Y[idx] = cir[fn.split("/")[-2]] else: # padding q_in.put((idx, None, val)) Y[idx] = -1 shutdown = False class Cookie: def __init__(self, num): self.num = num def __del__(self): if not shutdown: try: enqueue_batch(self.num) except StopIteration: pass gotten = [0]*BATCH_COUNT def receive_batch(): while 1: num = q_out.get()//batch_size gotten[num] += 1 if gotten[num] == batch_size: break gotten[num] = 0 return X[num*batch_size:(num+1)*batch_size], Y[num*batch_size:(num+1)*batch_size], Cookie(num) #q_in, q_out = MyQueue(multiple_writers=False), MyQueue(multiple_readers=False) q_in, q_out = Queue(), Queue() sz = (batch_size*BATCH_COUNT, 224, 224, 3) if os.path.exists("/dev/shm/resnet_X"): os.unlink("/dev/shm/resnet_X") shm = shared_memory.SharedMemory(name="resnet_X", create=True, size=prod(sz)) procs = [] try: # disk:shm is slower #X = Tensor.empty(*sz, dtype=dtypes.uint8, device=f"disk:shm:{shm.name}") X = Tensor.empty(*sz, dtype=dtypes.uint8, device=f"disk:/dev/shm/resnet_X") Y = [None] * (batch_size*BATCH_COUNT) for _ in range(cpu_count()): p = Process(target=loader_process, args=(q_in, q_out, X, seed)) p.daemon = True p.start() procs.append(p) for bn in range(BATCH_COUNT): enqueue_batch(bn) # NOTE: this is batch aligned, last ones are ignored unless pad_first_batch is True for _ in range(0, file_count//batch_size): yield receive_batch() finally: shutdown = True # empty queues for _ in procs: q_in.put(None) q_in.close() for _ in procs: while q_out.get() is not None: pass q_out.close() # shutdown processes for p in procs: p.join() shm.close() try: shm.unlink() except FileNotFoundError: # happens with BENCHMARK set pass @functools.lru_cache(maxsize=128) def load_bert_file(fn:str) -> List[dict]: with open(fn, "rb") as f: data = pickle.load(f) return data def process_batch_bert(data: List[dict]) -> dict[str, Tensor]: return { "input_ids": Tensor(np.concatenate([s["input_ids"] for s in data], axis=0), dtype=dtypes.float32), "input_mask": Tensor(np.concatenate([s["input_mask"] for s in data], axis=0), dtype=dtypes.default_float), "segment_ids": Tensor(np.concatenate([s["segment_ids"] for s in data], axis=0), dtype=dtypes.float32), "masked_lm_positions": Tensor(np.concatenate([s["masked_lm_positions"] for s in data], axis=0), dtype=dtypes.float32), "masked_lm_ids": Tensor(np.concatenate([s["masked_lm_ids"] for s in data], axis=0), dtype=dtypes.float32), "masked_lm_weights": Tensor(np.concatenate([s["masked_lm_weights"] for s in data], axis=0), dtype=dtypes.float32), "next_sentence_labels": Tensor(np.concatenate([s["next_sentence_labels"] for s in data], axis=0), dtype=dtypes.float32), } def shuffle_parts(file_paths: List[str]) -> List[str]: parts = {} for f in file_paths: part = Path(f).stem.split('_')[0] if part not in parts: parts[part] = [] parts[part].append(f) part_ids = list(parts.keys()) random.shuffle(part_ids) shuffled_files = [] for p in part_ids: parts[p].sort(key=lambda x: int(Path(x).stem.split('_')[1])) shuffled_files.extend(parts[p]) return shuffled_files def random_sample(data: List[str]): index = random.randint(0, len(data) - 1) selected_sample = data[index] return selected_sample, index def load_datasample(file_and_offset:Tuple[str, int]) -> List[dict]: data = load_bert_file(file_and_offset[0]) return data[file_and_offset[1]] # Reference: https://github.com/mlcommons/training/blob/1c8a098ae3e70962a4f7422c0b0bd35ae639e357/language_model/tensorflow/bert/run_pretraining.py, Line 394 def batch_load_train_bert(BS:int): from extra.datasets.wikipedia import get_wiki_train_files files = shuffle_parts(get_wiki_train_files()) dataset = [] for f in files: lists = [(f, o) for o in range(int(Path(f).stem.split("_")[3].split(".")[0]))] dataset.extend(lists) active_set = deque(dataset[:1000]) remaining_set = deque(dataset[1000:]) while dataset: blob = [] for _ in range(BS): if active_set: index = random.randint(0, len(active_set) - 1) sample = active_set[index] active_set.remove(sample) blob.append(sample) if remaining_set: active_set.append(remaining_set.popleft()) yield process_batch_bert([load_datasample(sample) for sample in blob]) # Reference: https://github.com/mlcommons/training/blob/1c8a098ae3e70962a4f7422c0b0bd35ae639e357/language_model/tensorflow/bert/run_pretraining.py, Line 416 def batch_load_val_bert(BS:int): from extra.datasets.wikipedia import get_wiki_val_files files = get_wiki_val_files() dataset = list(itertools.chain.from_iterable([load_bert_file(f) for f in files])) idx = 0 while True: start_idx = (idx * BS) % len(dataset) end_idx = ((idx + 1) * BS) % len(dataset) if start_idx < end_idx: yield process_batch_bert(dataset[start_idx:end_idx]) else: # wrap around the end to the beginning of the dataset yield process_batch_bert(dataset[start_idx:] + dataset[:end_idx]) idx += 1 if __name__ == "__main__": from extra.datasets.imagenet import get_train_files, get_val_files VAL = getenv("VAL", 1) files = get_val_files() if VAL else get_train_files() with tqdm(total=len(files)) as pbar: for x,y,c in batch_load_resnet(val=VAL): pbar.update(x.shape[0])