import unittest from tinygrad.tensor import Tensor # similar to test/external/external_test_gpu_ast.py, but universal class TestSpecific(unittest.TestCase): # from openpilot # 1x1 6 <- 24 def test_1x1_6_24(self): x = Tensor.randn(1, 24*4, 32, 64) w = Tensor.randn(6*4, 24*4, 1, 1) x.conv2d(w).permute(0,2,3,1).reshape(32, 384, 4).contiguous().realize() def test_vec_mul(self): # this forces it to be an image... x = Tensor.ones(1, 512, 4).contiguous().reshape(1, 2048) w = Tensor.randn(2048, 512) (x @ w).reshape(1, 128, 4).contiguous().realize() # from https://dl.acm.org/doi/pdf/10.1145/3495243.3517020 # ~260 GFLOPS on Adreno 640, should be 260*(720/890)*(596/710) = 176.5 on downclocked 630 # we get 170 def test_1x1_28_28(self): x = Tensor.randn(1, 256, 28, 28) w = Tensor.randn(256, 256, 1, 1) x.conv2d(w).permute(0,2,3,1).reshape(28, 28*256//4, 4).contiguous().realize() # 132 GFLOPS on Adreno 640, should be 132*(720/890)*(596/710) = 90 on downclocked 630 # gets 54 with broken opt, 74 without opt, and 146 if we pad and opt 3! def test_3x3_28_28_stride_2(self): x = Tensor.randn(1, 288, 36, 36) w = Tensor.randn(384, 288, 3, 3) x.conv2d(w, stride=2).permute(0,2,3,1).reshape(17, 17*384//4, 4).contiguous().realize() def test_3x3_28_28_stride_2_padded(self): x = Tensor.randn(1, 288, 36, 36) w = Tensor.randn(384, 288, 3, 3) x.conv2d(w, stride=2, padding=1).permute(0,2,3,1).reshape(18, 18*384//4, 4).contiguous().realize() if __name__ == '__main__': unittest.main()