from typing import Tuple, Union, Optional, Dict, Any from tinygrad import Tensor, Variable, TinyJit, dtypes, nn, Device from tinygrad.helpers import getenv # https://github.com/facebookresearch/llama/blob/1076b9c51c77ad06e9d7ba8a4c6df775741732bd/llama/model.py#L47 def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0) -> Tensor: freqs = 1.0 / (theta ** (Tensor.arange(0, dim, 2, dtype=dtypes.half)[:(dim // 2)] / dim)) freqs = Tensor.arange(end).unsqueeze(dim=1)*freqs.unsqueeze(dim=0) return Tensor.stack([Tensor.cos(freqs), Tensor.sin(freqs)], dim=-1).reshape(1, end, 1, dim//2, 2) # (a+i*b) * (c+i*d) = (ac-bd) + i*(ad+bc) def complex_mult(A, c, d): a,b = A[..., 0:1], A[..., 1:2] ro = a*c - b*d co = a*d + b*c return ro.cat(co, dim=-1) def apply_rotary_emb(xq, xk, freqs_cis) -> Tuple[Tensor, Tensor]: assert freqs_cis.shape[1] == xq.shape[1] == xk.shape[1], f"freqs_cis shape mismatch {freqs_cis.shape} xq:{xq.shape} xk:{xk.shape}" xq = xq.reshape(*xq.shape[0:-1], -1, 2) xk = xk.reshape(*xk.shape[0:-1], -1, 2) assert len(xq.shape) == len(xk.shape) == len(freqs_cis.shape) == 5 c, d = freqs_cis[..., 0:1], freqs_cis[..., 1:2] xq_out = complex_mult(xq, c, d) xk_out = complex_mult(xk, c, d) return xq_out.flatten(3), xk_out.flatten(3) def repeat_kv(x:Tensor, n_rep:int) -> Tensor: bs, seqlen, n_kv_heads, head_dim = x.shape if n_rep == 1: return x # NOTE: this is different from x.repeat((1, 1, n_rep, 1)) return x.repeat((1, 1, 1, n_rep)).reshape(bs, seqlen, n_kv_heads * n_rep, head_dim) class RMSNorm: def __init__(self, dim, eps=1e-6): self.eps = eps self.weight = Tensor.ones(dim) def __call__(self, x:Tensor): x = x.float() return (x * (x.pow(2).mean(-1, keepdim=True) + self.eps).rsqrt()) * self.weight class Attention: def __init__(self, dim, n_heads, n_kv_heads, max_context, linear=nn.Linear): self.n_heads = n_heads self.n_kv_heads = n_kv_heads if n_kv_heads is not None else n_heads # n_kv_heads != n_heads implies MQA [arxiv/2307.09288, A.2.1] self.head_dim = dim // n_heads self.n_rep = self.n_heads // self.n_kv_heads self.max_context = max_context self.wq = linear(dim, self.n_heads * self.head_dim, bias=False) self.wk = linear(dim, self.n_kv_heads * self.head_dim, bias=False) self.wv = linear(dim, self.n_kv_heads * self.head_dim, bias=False) self.wo = linear(self.n_heads * self.head_dim, dim, bias=False) def __call__(self, x:Tensor, start_pos:Union[Variable,int], freqs_cis:Tensor, mask:Optional[Tensor]) -> Tensor: x = x.half() xq, xk, xv = self.wq(x).half(), self.wk(x).half(), self.wv(x).half() xq = xq.reshape(xq.shape[0], xq.shape[1], self.n_heads, self.head_dim) xk = xk.reshape(xk.shape[0], xk.shape[1], self.n_kv_heads, self.head_dim) xv = xv.reshape(xv.shape[0], xv.shape[1], self.n_kv_heads, self.head_dim) xq, xk = apply_rotary_emb(xq, xk, freqs_cis) bsz, seqlen, _, _ = xq.shape # create kv cache if not hasattr(self, "cache_k"): self.cache_k = Tensor.zeros(bsz, self.max_context, self.n_kv_heads, self.head_dim, dtype=x.dtype).contiguous().realize() self.cache_v = Tensor.zeros(bsz, self.max_context, self.n_kv_heads, self.head_dim, dtype=x.dtype).contiguous().realize() if isinstance(x.device, tuple): # TODO: instead of specifying how to shard, it can follow how xk and xv are being sharded self.cache_k.shard_((xk.device), axis=None).realize() self.cache_v.shard_((xv.device), axis=None).realize() # HACK: without contiguous, the conversation mode is broken and the cache is not updated keys = self.cache_k.shrink((None, (0, start_pos), None, None)).cat(xk, dim=1).contiguous() if start_pos > 0 else xk values = self.cache_v.shrink((None, (0, start_pos), None, None)).cat(xv, dim=1).contiguous() if start_pos > 0 else xv # update the cache assert keys.dtype == self.cache_k.dtype and values.dtype == self.cache_v.dtype, f"{keys.dtype=}, {values.dtype=}, {self.cache_k.dtype=}, {self.cache_v.dtype=}" self.cache_k.assign(keys.pad((None,(0,self.max_context-start_pos-seqlen),None,None))).realize() self.cache_v.assign(values.pad((None,(0,self.max_context-start_pos-seqlen),None,None))).realize() keys, values = repeat_kv(keys, self.n_rep), repeat_kv(values, self.n_rep) xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2) attn = xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2) attn = attn.reshape(bsz, seqlen, -1) return self.wo(attn) class FeedForward: def __init__(self, dim:int, hidden_dim:int, linear=nn.Linear): self.w1 = linear(dim, hidden_dim, bias=False) self.w2 = linear(hidden_dim, dim, bias=False) self.w3 = linear(dim, hidden_dim, bias=False) # the gate in Gated Linear Unit def __call__(self, x:Tensor) -> Tensor: return self.w2(self.w1(x).silu() * self.w3(x)) # SwiGLU [arxiv/2002.05202, eq (5)] class TransformerBlock: def __init__(self, dim:int, hidden_dim:int, n_heads:int, n_kv_heads:int, norm_eps:float, max_context:int, linear=nn.Linear, feed_forward=FeedForward): self.attention = Attention(dim, n_heads, n_kv_heads, max_context, linear) self.feed_forward = feed_forward(dim, hidden_dim, linear) self.attention_norm = RMSNorm(dim, norm_eps) self.ffn_norm = RMSNorm(dim, norm_eps) def __call__(self, x:Tensor, start_pos:Union[Variable,int], freqs_cis:Tensor, mask:Optional[Tensor]): h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask) return (h + self.feed_forward(self.ffn_norm(h).half())).realize() class Transformer: def __init__(self, dim:int, hidden_dim:int, n_heads:int, n_layers:int, norm_eps:float, vocab_size, linear=nn.Linear, n_kv_heads=None, rope_theta=10000, max_context=1024, jit=True, feed_forward=FeedForward): self.layers = [TransformerBlock(dim, hidden_dim, n_heads, n_kv_heads, norm_eps, max_context, linear, feed_forward=feed_forward) for _ in range(n_layers)] self.norm = RMSNorm(dim, norm_eps) self.tok_embeddings = nn.Embedding(vocab_size, dim) self.output = linear(dim, vocab_size, bias=False) self.max_context = max_context self.freqs_cis = precompute_freqs_cis(dim // n_heads, self.max_context * 2, rope_theta) self.forward_jit = TinyJit(self.forward) if jit else None def forward(self, tokens:Tensor, start_pos:Union[Variable,int], temperature:float=0.0): _bsz, seqlen = tokens.shape freqs_cis = self.freqs_cis.shrink((None, (start_pos, start_pos+seqlen),None,None,None)) h = self.tok_embeddings(tokens) mask = Tensor.full((1, 1, seqlen, start_pos+seqlen), float("-inf"), dtype=h.dtype, device=h.device).triu(start_pos+1).realize() if seqlen > 1 else None for layer in self.layers: h = layer(h, start_pos, freqs_cis, mask) logits = self.output(self.norm(h))[:, -1, :] if temperature < 1e-6: ret = logits.argmax(-1) else: ret = (logits / temperature).softmax().multinomial() return ret.realize() def __call__(self, tokens:Tensor, start_pos:Variable, temperature:float=0.0): # TODO: better way to handle the first call v.s. the rest? if tokens.shape[0:2] == (1,1) and self.forward_jit is not None: assert start_pos > 0 return self.forward_jit(tokens, Variable("start_pos", 1, self.max_context).bind(start_pos), temperature) return self.forward(tokens, start_pos, temperature) # *** helpers *** def convert_from_huggingface(weights:Dict[str, Tensor], model: Transformer, n_heads: int, n_kv_heads: int): def permute(v: Tensor, n_heads: int): return v.reshape(n_heads, 2, v.shape[0] // n_heads // 2, v.shape[1]).transpose(1, 2).reshape(*v.shape[:2]) keymap = { "model.embed_tokens.weight": "tok_embeddings.weight", **{f"model.layers.{l}.input_layernorm.weight": f"layers.{l}.attention_norm.weight" for l in range(len(model.layers))}, **{f"model.layers.{l}.self_attn.{x}_proj.weight": f"layers.{l}.attention.w{x}.weight" for x in ["q", "k", "v", "o"] for l in range(len(model.layers))}, **{f"model.layers.{l}.post_attention_layernorm.weight": f"layers.{l}.ffn_norm.weight" for l in range(len(model.layers))}, **{f"model.layers.{l}.mlp.{x}_proj.weight": f"layers.{l}.feed_forward.w{y}.weight" for x, y in {"gate": "1", "down": "2", "up": "3"}.items() for l in range(len(model.layers))}, "model.norm.weight": "norm.weight", "lm_head.weight": "output.weight", } sd = {} for k, v in weights.items(): if ".rotary_emb." in k: continue v = v.to(Device.DEFAULT) if "model.layers" in k: if "q_proj" in k: v = permute(v, n_heads) elif "k_proj" in k: v = permute(v, n_kv_heads) sd[keymap[k]] = v return sd def fix_bf16(weights:Dict[Any, Tensor]): if getenv("SUPPORT_BF16", 1): # TODO: without casting to float16, 70B llama OOM on tinybox. return {k:v.cast(dtypes.float16) if v.dtype == dtypes.bfloat16 else v for k,v in weights.items()} # TODO: check if device supports bf16 return {k:v.llvm_bf16_cast(dtypes.half).to(v.device) if v.dtype == dtypes.bfloat16 else v for k,v in weights.items()}