name: Benchmarks on: push: branches: - master - update_benchmark workflow_dispatch: inputs: run_process_replay: description: "Run process replay tests" required: false default: false type: boolean jobs: testmacbenchmark: name: Mac Benchmark runs-on: [self-hosted, macOS] defaults: run: shell: bash -o pipefail {0} if: github.repository_owner == 'tinygrad' env: PYTHONPATH: . steps: - name: Checkout Code uses: actions/checkout@v4 - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/extra/disassemblers/applegpu extra/disassemblers/applegpu ln -s ~/tinygrad/weights/sd-v1-4.ckpt weights/sd-v1-4.ckpt ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz # - name: Setup process replay # if: github.event.inputs.run_process_replay == 'true' || contains(github.event.head_commit.message, '[run_process_replay]') || contains(github.event.pull_request.title, '[run_process_replay]') # run: echo "RUN_PROCESS_REPLAY=1" >> $GITHUB_ENV - name: Run Stable Diffusion run: JIT=2 THREEFRY=1 python3 examples/stable_diffusion.py --seed 0 --noshow --timing | tee sd.txt - name: Run model inference benchmark run: METAL=1 python3 test/external/external_model_benchmark.py - name: Test speed vs torch run: BIG=2 MPS=1 python3 test/test_speed_v_torch.py | tee torch_speed.txt - name: Test tensor cores run: METAL=1 python3 test/test_linearizer.py TestLinearizer.test_tensor_cores TestLinearizer.test_tensor_cores_padded - name: Run Tensor Core GEMM run: | DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul.txt DEBUG=2 HALF=1 python3 extra/gemm/simple_matmul.py | tee matmul_half.txt - name: Fuzz Padded Tensor Core GEMM run: METAL=1 M_START=6 M_STOP=10 M_STEP=1 N_START=6 N_STOP=10 N_STEP=1 K_START=6 K_STOP=24 K_STEP=1 TC_OPT=2 DEBUG=2 python3 ./extra/gemm/fuzz_matmul.py - name: Run LLaMA run: | JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt - name: Run LLaMA with BEAM run: JIT=1 BEAM=2 CACHELEVEL=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt - name: Run quantized LLaMA run: | JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing --quantize int8 | tee llama_int8.txt JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing --quantize nf4 | tee llama_nf4.txt - name: Run LLaMA 7B on 4 (virtual) GPUs run: JIT=1 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt - name: Run GPT2 run: | JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt JIT=1 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt - name: Run GPT2 w HALF run: JIT=1 HALF=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half.txt - name: Run GPT2 w HALF/BEAM run: JIT=1 HALF=1 BEAM=2 CACHELEVEL=0 CAST_BEFORE_VIEW=0 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half_beam.txt - name: Train MNIST run: time PYTHONPATH=. TARGET_EVAL_ACC_PCT=97.3 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt - name: Run 10 CIFAR training steps run: JIT=2 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt - name: Run 10 CIFAR training steps w HALF run: JIT=2 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt #- name: Run 10 CIFAR training steps w BF16 # run: STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt - name: Run 10 CIFAR training steps w winograd run: JIT=2 WINO=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar_wino.txt - name: Run process replay tests if: env.RUN_PROCESS_REPLAY == '1' run: cp test/external/replay_codegen.py ./replay_codegen.py && git fetch origin master && git checkout origin/master && PYTHONPATH=. python3 replay_codegen.py - uses: actions/upload-artifact@v4 with: name: Speed (Mac) path: | onnx_inference_speed.csv torch_speed.txt llama_unjitted.txt llama_jitted.txt llama_beam.txt llama_int8.txt llama_nf4.txt llama_four_gpu.txt gpt2_unjitted.txt gpt2_jitted.txt gpt2_half.txt gpt2_half_beam.txt matmul.txt matmul_half.txt sd.txt beautiful_mnist.txt train_cifar.txt train_cifar_half.txt train_cifar_bf16.txt train_cifar_wino.txt testnvidiabenchmark: name: tinybox green Benchmark runs-on: [self-hosted, Linux, tinyboxgreen] defaults: run: shell: bash -o pipefail {0} if: github.repository_owner == 'tinygrad' env: PYTHONPATH: . steps: - name: Checkout Code uses: actions/checkout@v4 - name: Print nvidia-smi run: nvidia-smi - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 ln -s /raid/weights/LLaMA-3 weights/LLaMA-3 mkdir -p extra/datasets ln -s /raid/datasets/imagenet extra/datasets/imagenet - name: Run model inference benchmark run: CUDA=1 NOCLANG=1 python3 test/external/external_model_benchmark.py - name: Test speed vs torch run: CUDA=1 BIG=2 TORCHCUDA=1 python3 test/test_speed_v_torch.py | tee torch_speed.txt - name: Test tensor cores run: | CUDA=1 python3 test/test_linearizer.py TestLinearizer.test_tensor_cores TestLinearizer.test_tensor_cores_padded PTX=1 python3 test/test_linearizer.py TestLinearizer.test_tensor_cores TestLinearizer.test_tensor_cores_padded - name: Run Tensor Core GEMM (CUDA) run: | CUDA=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul.txt CUDA=1 BFLOAT16=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_bfloat16.txt - name: Run Tensor Core GEMM (CUDA) with BEAM run: BEAM=4 CUDA=1 HALF=1 CACHELEVEL=0 DEBUG=2 python3 extra/gemm/simple_matmul.py - name: Run Tensor Core GEMM (PTX) run: CUDA=1 PTX=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_ptx.txt - name: Run Tensor Core GEMM (NV) run: NV=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_nv.txt - name: Fuzz Padded Tensor Core GEMM(CUDA) run: CUDA=1 M_START=12 M_STOP=20 M_STEP=1 N_START=6 N_STOP=10 N_STEP=1 K_START=28 K_STOP=36 K_STEP=1 HALF=1 TC_OPT=2 python3 ./extra/gemm/fuzz_matmul.py - name: Fuzz Padded Tensor Core GEMM(PTX) run: CUDA=1 PTX=1 M_START=12 M_STOP=20 M_STEP=1 N_START=6 N_STOP=10 N_STEP=1 K_START=28 K_STOP=36 K_STEP=1 HALF=1 TC_OPT=2 python3 ./extra/gemm/fuzz_matmul.py - name: Run Stable Diffusion run: CUDA=1 THREEFRY=1 python3 examples/stable_diffusion.py --seed 0 --noshow --timing | tee sd.txt - name: Run LLaMA run: | CUDA=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt CUDA=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt - name: Run LLaMA with BEAM run: CUDA=1 JIT=1 BEAM=2 CACHELEVEL=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt - name: Run LLaMA 7B on 4 GPUs run: CUDA=1 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt - name: Run LLaMA 7B on 6 GPUs run: CUDA=1 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_six_gpu.txt - name: Run LLaMA-3 8B BEAM run: NV=1 JITBEAM=2 CACHELEVEL=0 python3 examples/llama3.py --model weights/LLaMA-3/8B-SF-DPO/ --benchmark | tee llama3_beam.txt - name: Run LLaMA-3 8B on 4 GPUs run: NV=1 python3 examples/llama3.py --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark | tee llama3_four_gpu.txt - name: Run LLaMA-3 8B on 6 GPUs run: NV=1 python3 examples/llama3.py --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark | tee llama3_six_gpu.txt # - name: Run LLaMA-2 70B # run: CUDA=1 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_2_70B.txt # - name: Run Mixtral 8x7B # run: time CUDA=1 python3 examples/mixtral.py --temperature 0 --count 10 --timing | tee mixtral.txt - name: Run GPT2 run: | CUDA=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt CUDA=1 JIT=1 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt - name: Run GPT2 w HALF run: CUDA=1 JIT=1 HALF=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half.txt - name: Run GPT2 w HALF/BEAM run: CUDA=1 JIT=1 HALF=1 BEAM=2 CACHELEVEL=0 CAST_BEFORE_VIEW=0 JIT_BATCH_SIZE=4 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half_beam.txt - uses: actions/upload-artifact@v4 with: name: Speed (NVIDIA) path: | onnx_inference_speed.csv torch_speed.txt matmul.txt matmul_bfloat16.txt matmul_ptx.txt matmul_nv.txt sd.txt llama_unjitted.txt llama_jitted.txt llama_beam.txt llama_four_gpu.txt llama_six_gpu.txt llama3_beam.txt llama3_four_gpu.txt llama3_six_gpu.txt # llama_2_70B.txt # mixtral.txt gpt2_unjitted.txt gpt2_jitted.txt gpt2_half.txt gpt2_half_beam.txt testmorenvidiabenchmark: name: tinybox green Training Benchmark runs-on: [self-hosted, Linux, tinyboxgreen] defaults: run: shell: bash -o pipefail {0} if: github.repository_owner == 'tinygrad' env: PYTHONPATH: . steps: - name: Checkout Code uses: actions/checkout@v4 - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 mkdir -p extra/datasets ln -s /raid/datasets/imagenet extra/datasets/imagenet - name: Train MNIST run: time PYTHONPATH=. CUDA=1 TARGET_EVAL_ACC_PCT=97.3 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt - name: Run 10 CIFAR training steps run: CUDA=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt - name: Run 10 CIFAR training steps w HALF run: CUDA=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt - name: Run 10 CIFAR training steps w BF16 run: CUDA=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt - name: Run 10 CIFAR training steps w winograd run: CUDA=1 WINO=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar_wino.txt - name: Run full CIFAR training w 1 GPU run: time CUDA=1 DEFAULT_FLOAT=HALF LATEWINO=1 STEPS=1000 TARGET_EVAL_ACC_PCT=93.2 python3 examples/hlb_cifar10.py | tee train_cifar_one_gpu.txt - name: Run full CIFAR training steps w 6 GPUS run: time CUDA=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.2 python3 examples/hlb_cifar10.py | tee train_cifar_six_gpu.txt - name: Run MLPerf resnet eval on training data run: time CUDA=1 MODEL=resnet python3 examples/mlperf/model_eval.py - name: Run 10 MLPerf ResNet50 training steps (1 gpu) run: CUDA=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet_one_gpu.txt - name: Run 10 MLPerf ResNet50 training steps (6 gpu) run: CUDA=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt - uses: actions/upload-artifact@v4 with: name: Speed (NVIDIA Training) path: | beautiful_mnist.txt train_cifar.txt train_cifar_half.txt train_cifar_bf16.txt train_cifar_wino.txt train_cifar_one_gpu.txt train_resnet.txt train_resnet_one_gpu.txt train_cifar_six_gpu.txt testamdbenchmark: name: tinybox red Benchmark runs-on: [self-hosted, Linux, tinybox] defaults: run: shell: bash -o pipefail {0} if: github.repository_owner == 'tinygrad' env: PYTHONPATH: . steps: - name: Checkout Code uses: actions/checkout@v4 - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 ln -s /raid/weights/LLaMA-3 weights/LLaMA-3 mkdir -p extra/datasets ln -s /raid/datasets/imagenet extra/datasets/imagenet - name: Show off tinybox run: /opt/rocm/bin/rocm-bandwidth-test # TODO: unstable on AMD #- name: Run model inference benchmark # run: LD_PRELOAD="/opt/rocm/lib/libhsa-runtime64.so" HSA=1 NOCLANG=1 python3 test/external/external_model_benchmark.py # TODO: unstable on AMD #- name: Test speed vs torch # run: | # python3 -c "import torch; print(torch.__version__)" # LD_PRELOAD="/opt/rocm/lib/libhsa-runtime64.so" HSA=1 BIG=2 TORCHCUDA=1 python3 test/test_speed_v_torch.py | tee torch_speed.txt - name: Test tensor cores run: | AMD=1 python3 test/test_linearizer.py TestLinearizer.test_tensor_cores TestLinearizer.test_tensor_cores_padded - name: Run Tensor Core GEMM (AMD) run: AMD=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_amd.txt # TODO: AMD compiler bug causes this to fail #- name: Fuzz Padded Tensor Core GEMM # run: HSA=1 M_START=12 M_STOP=20 M_STEP=1 N_START=12 N_STOP=20 N_STEP=1 K_START=28 K_STOP=36 K_STEP=1 HALF=1 TC_OPT=2 DEBUG=2 python3 ./extra/gemm/fuzz_matmul.py - name: Run Stable Diffusion run: AMD=1 THREEFRY=1 python3 examples/stable_diffusion.py --seed 0 --noshow --timing | tee sd.txt - name: Run LLaMA 7B run: | AMD=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt AMD=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt - name: Run LLaMA 7B with BEAM run: AMD=1 JIT=1 BEAM=2 CACHELEVEL=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt - name: Run LLaMA 7B on 4 GPUs run: AMD=1 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt - name: Run LLaMA 7B on 6 GPUs run: AMD=1 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_six_gpu.txt - name: Run LLaMA-3 8B BEAM run: AMD=1 JITBEAM=2 CACHELEVEL=0 python3 examples/llama3.py --model weights/LLaMA-3/8B-SF-DPO/ --benchmark | tee llama3_beam.txt - name: Run LLaMA-3 8B on 4 GPUs run: AMD=1 python3 examples/llama3.py --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark | tee llama3_four_gpu.txt - name: Run LLaMA-3 8B on 6 GPUs run: AMD=1 python3 examples/llama3.py --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark | tee llama3_six_gpu.txt - name: Run LLaMA-2 70B run: AMD=1 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_2_70B.txt - name: Run Mixtral 8x7B run: time AMD=1 python3 examples/mixtral.py --temperature 0 --count 10 --timing | tee mixtral.txt - name: Run GPT2 run: | AMD=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt AMD=1 JIT=1 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt - name: Run GPT2 w HALF run: AMD=1 JIT=1 HALF=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half.txt - name: Run GPT2 w HALF/BEAM run: AMD=1 JIT=1 HALF=1 BEAM=2 CACHELEVEL=0 CAST_BEFORE_VIEW=0 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half_beam.txt - uses: actions/upload-artifact@v4 with: name: Speed (AMD) path: | onnx_inference_speed.csv torch_speed.txt llama_unjitted.txt llama_jitted.txt llama_beam.txt llama_four_gpu.txt llama_six_gpu.txt llama3_beam.txt llama3_four_gpu.txt llama3_six_gpu.txt llama_2_70B.txt gpt2_unjitted.txt gpt2_jitted.txt gpt2_half.txt gpt2_half_beam.txt matmul.txt matmul_amd.txt sd.txt mixtral.txt testmoreamdbenchmark: name: tinybox red Training Benchmark runs-on: [self-hosted, Linux, tinybox] defaults: run: shell: bash -o pipefail {0} if: github.repository_owner == 'tinygrad' env: PYTHONPATH: . steps: - name: Checkout Code uses: actions/checkout@v4 - name: Symlink models and datasets run: | mkdir -p weights ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz ln -s ~/tinygrad/weights/LLaMA weights/LLaMA ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen ln -s /raid/weights/LLaMA-2 weights/LLaMA-2 mkdir -p extra/datasets ln -s /raid/datasets/imagenet extra/datasets/imagenet - name: Train MNIST run: time PYTHONPATH=. AMD=1 TARGET_EVAL_ACC_PCT=97.3 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt - name: Run 10 CIFAR training steps run: AMD=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt - name: Run 10 CIFAR training steps w HALF run: AMD=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt - name: Run 10 CIFAR training steps w BF16 run: AMD=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt - name: Run 10 CIFAR training steps w winograd run: AMD=1 WINO=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar_wino.txt - name: Run full CIFAR training w 1 GPU run: time AMD=1 DEFAULT_FLOAT=HALF LATEWINO=1 STEPS=1000 TARGET_EVAL_ACC_PCT=93.2 python3 examples/hlb_cifar10.py | tee train_cifar_one_gpu.txt - name: Run full CIFAR training steps w 6 GPUS run: time AMD=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.2 python3 examples/hlb_cifar10.py | tee train_cifar_six_gpu.txt - name: Run MLPerf resnet eval run: time AMD=1 MODEL=resnet python3 examples/mlperf/model_eval.py - name: Run 10 MLPerf ResNet50 training steps (1 gpu) run: AMD=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet_one_gpu.txt - name: Run 10 MLPerf ResNet50 training steps (6 gpu) run: AMD=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt - uses: actions/upload-artifact@v4 with: name: Speed (AMD Training) path: | beautiful_mnist.txt train_cifar.txt train_cifar_half.txt train_cifar_bf16.txt train_cifar_wino.txt train_cifar_one_gpu.txt train_resnet.txt train_resnet_one_gpu.txt train_cifar_six_gpu.txt