import os import io import numpy as np import gzip import tarfile import pickle from extra.utils import fetch def fetch_mnist(): parse = lambda file: np.frombuffer(gzip.open(file).read(), dtype=np.uint8).copy() X_train = parse(os.path.dirname(__file__)+"/mnist/train-images-idx3-ubyte.gz")[0x10:].reshape((-1, 28*28)).astype(np.float32) Y_train = parse(os.path.dirname(__file__)+"/mnist/train-labels-idx1-ubyte.gz")[8:] X_test = parse(os.path.dirname(__file__)+"/mnist/t10k-images-idx3-ubyte.gz")[0x10:].reshape((-1, 28*28)).astype(np.float32) Y_test = parse(os.path.dirname(__file__)+"/mnist/t10k-labels-idx1-ubyte.gz")[8:] return X_train, Y_train, X_test, Y_test def fetch_cifar(): tt = tarfile.open(fileobj=io.BytesIO(fetch('https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz')), mode='r:gz') db = pickle.load(tt.extractfile('cifar-10-batches-py/data_batch_1'), encoding="bytes") X = db[b'data'].reshape((-1, 3, 32, 32)) Y = np.array(db[b'labels']) return X, Y