import numpy as np from tinygrad.tensor import Tensor class TransformerBlock: def __init__(self, embed_dim, num_heads, ff_dim, prenorm=False, act=lambda x: x.relu()): self.num_heads = num_heads self.head_size = embed_dim // num_heads assert self.head_size * self.num_heads == embed_dim self.prenorm, self.act = prenorm, act self.query = (Tensor.uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim)) self.key = (Tensor.uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim)) self.value = (Tensor.uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim)) self.out = (Tensor.uniform(embed_dim, embed_dim), Tensor.zeros(embed_dim)) self.ff1 = (Tensor.uniform(embed_dim, ff_dim), Tensor.zeros(ff_dim)) self.ff2 = (Tensor.uniform(ff_dim, embed_dim), Tensor.zeros(embed_dim)) self.ln1 = (Tensor.ones(embed_dim), Tensor.zeros(embed_dim)) self.ln2 = (Tensor.ones(embed_dim), Tensor.zeros(embed_dim)) def attn(self, x): # x: (bs, time, embed_dim) -> (bs, time, embed_dim) query, key, value = [x.linear(*y) \ .reshape(shape=(x.shape[0], -1, self.num_heads, self.head_size)) \ for y in [self.query, self.key, self.value]] query = query.transpose(order=(0,2,1,3)) # (bs, num_heads, time, head_size) key = key.transpose(order=(0,2,3,1)) # (bs, num_heads, head_size, time) value = value.transpose(order=(0,2,1,3)) # (bs, num_heads, time, head_size) score = query.dot(key) * (1 / np.sqrt(self.head_size)) weights = score.softmax() # (bs, num_heads, time, time) attention = weights.dot(value).transpose(order=(0,2,1,3)) # (bs, time, num_heads, head_size) return attention.reshape(shape=(x.shape[0], -1, self.num_heads * self.head_size)).linear(*self.out) def __call__(self, x): if self.prenorm: x = x + self.attn(x.layernorm().linear(*self.ln1)).dropout(0.1) x = x + self.act(x.layernorm().linear(*self.ln2).linear(*self.ff1)).linear(*self.ff2).dropout(0.1) else: x = x + self.attn(x).dropout(0.1) x = x.layernorm().linear(*self.ln1) x = x + self.act(x.linear(*self.ff1)).linear(*self.ff2).dropout(0.1) x = x.layernorm().linear(*self.ln2) return x class Transformer: def __init__(self, syms, maxlen, layers, embed_dim, num_heads, ff_dim): self.maxlen, self.syms = maxlen, syms self.embed = Tensor.uniform(maxlen+syms, embed_dim, requires_grad=False) self.tbs = [] for i in range(layers): self.tbs.append(TransformerBlock(embed_dim, num_heads, ff_dim)) self.final = Tensor.uniform(embed_dim, syms) def forward(self, x): bs = x.shape[0] xnp = x.cpu().data.astype(np.int32) onehot = np.zeros((bs, x.shape[1], self.maxlen+self.syms), dtype=np.float32) for i in range(x.shape[1]): onehot[range(bs), i, i] = 1 onehot[range(bs), i, self.maxlen + xnp[:, i]] = 1 onehot = onehot.reshape(bs*x.shape[1], self.maxlen+self.syms) x = Tensor(onehot, device=x.device).dot(self.embed).reshape(shape=(bs, x.shape[1], -1)) x = x.sequential(self.tbs) x = x.reshape(shape=(-1, x.shape[-1])).dot(self.final).logsoftmax() return x.reshape(shape=(bs, -1, x.shape[-1]))